Skip to main content

Arizona DOT testing wrong-way vehicle detectors

The Arizona Department of Transportation (ADOT) is testing wrong-way vehicle detection devices next to off-ramps along Phoenix-area freeways as part of an ongoing research effort to reduce the risk of wrong-way crashes. Three detectors, manufactured by Tapco have been installed along the northbound Interstate 17 exit to State Route 74, the eastbound Interstate 10 exit at Ray Road and the northbound Loop 101 off-ramp at Thunderbird Road. Two other detection devices, manufactured by Wavetronix, were instal
August 13, 2015 Read time: 2 mins
The 6576 Arizona Department of Transportation (ADOT) is testing wrong-way vehicle detection devices next to off-ramps along Phoenix-area freeways as part of an ongoing research effort to reduce the risk of wrong-way crashes.

Three detectors, manufactured by 989 Tapco have been installed along the northbound Interstate 17 exit to State Route 74, the eastbound Interstate 10 exit at Ray Road and the northbound Loop 101 off-ramp at Thunderbird Road. Two other detection devices, manufactured by Wavetronix, were installed late last year along a pair of Loop 101 exit ramps in the West Valley.

The Tapco system includes radar and camera sensors designed to detect wrong-way vehicles on freeway exit ramps. When a vehicle is detected, the system activates blinking red LED lights on two ‘wrong way’ signs to try to warn the driver. During the testing stage, the system also is set up to send email messages with photos to notify ADOT staff and the Department of Public Safety that a wrong-way vehicle is detected.

The three locations where the system is being tested were selected based on previous research, including figures from the Department of Public Safety on 9-1-1 emergency calls reporting wrong-way vehicles.

The testing of these detectors is among several steps ADOT has taken in efforts to reduce the risk of crashes involving wrong-way drivers on state highways, including a study of wrong-way vehicle detection and warning systems, including a review of potential countermeasures.

Following a pilot project, more than 500 larger and lowered ‘wrong way’ and ‘do not enter’ signs have been installed along dozens of state highway off-ramps. In one project earlier this year, ADOT used approximately US$300,000 in available highway maintenance funding to manufacture and install larger signs, as well as pavement arrows, along approximately 90 off-ramps around the state.

Related Content

  • December 22, 2015
    Missouri’s Road to Tomorrow provides ITS answers
    Andrew Bardin Williams looks at Missouri’s plans to become America’s ITS testbed The state of Missouri launched its Road to Tomorrow initiative earlier this summer at the ITS America Annual Meeting and Expo in Pittsburgh, rolling out the welcome mat for transportation officials to try out new, innovative ITS technologies in the field.
  • April 1, 2019
    Houston hurricane prompts TranStar warning
    Hurricane Harvey led to the creation of the Houston TranStar flood warning app
  • May 23, 2017
    Michigan Department of Transportation partners with 3M on connected work zone
    The Michigan Department of Transportation (MDOT) is partnering with 3M to utilise connected vehicle technologies along more than three miles of I-75. Using solutions from 3M, the current I-75 work zone in Oakland County will be transformed over the course of four months to improve safety for drivers and to test advanced vehicle to infrastructure technologies on the connected and autonomous vehicles of the future.
  • January 7, 2013
    Need for secure approach to connected vehicle technology
    Accidental or malicious issue of false messages to connected vehicles could result in dire consequences, so secure systems of authentication and certification are likely to be necessary, write Paul Avery and Sandra Dykes. Connectivity among vehicles in urban traffic systems will provide opportunity for beneficial impacts such as congestion reduction and greater safety. However, it also creates security risks with the potential for targeted disruption. Security algorithms, protocols and procedures must take