Skip to main content

Refurbishing ageing VMS with new technology

Virginia DoT faced a challenge common to many highway authorities around the world: the need, in economically challenging times, to replace ageing variable message signs reaching the end of their operational life. For some 25 years now, since the mid 80s, Virginia Department of Transportation (VDoT), has deployed variable message signs (VMS) as part of its motorist information systems. Throughout the state there are still many old 'flip-disk' signs. Some of the companies that provided these electronic messa
January 26, 2012 Read time: 5 mins

Virginia DoT faced a challenge common to many highway authorities around the world: the need, in economically challenging times, to replace ageing variable message signs reaching the end of their operational life

For some 25 years now, since the mid 80s, 1747 Virginia Department of Transportation (VDoT), has deployed variable message signs (VMS) as part of its motorist information systems. Throughout the state there are still many old 'flip-disk' signs. Some of the companies that provided these electronic message boards no longer support the products or have stopped manufacturing them altogether. As a result, maintenance has become increasingly difficult and costly: since parts for these signs are impossible to buy, VDoT has had to resort to cannibalising or hand repairing parts.

While many of the older VMS have been kept operational by such creative maintenance methods, VDoT recognised that even this approach was becoming unworkable. So these old signs would have to be replaced. But it is not that simple, as VDoTProject:
Virginia DoT Variable Message Sign Retrofitting programme
Cost:
$100,000 per sign approx.
Savings:
$200,000 per sign. Eventually, up to $300,000 per year savings in electrical energy and long term maintenance costs
Operations & Security Division administrator Tom Phillips explains: "A replacement VMS requires a full engineering evaluation, including determination of the condition and suitability of the support structure.

This is necessary because introducing a new VMS to existing supports introduces the possibility of overload or instability due to the change in the sign from the original design," Phillips says, adding that, in Virginia, support structures are examined in the same fashion as highway bridges for keeping in good repair.

The evaluations revealed no issues with the sign gantries - all were in good health. So VDoT could focus on just replacing the VMS units. Then it hit upon an idea: What if the existing VMS could be retrofitted with new technology while retaining the sign cases and other structural elements? This approach was explored with an evaluation process which eventually lasted a year. It began with a review and proofing of available technology and a trial of implementing new sign materials within refurbished VMS sign cases.

A site was selected that was representative of an older VMS within Virginia's Northern Region near Washington, DC. The sign was removed from the support structure and a manufacturer was selected to fabricate retrofit kits that could be installed by VDoT staff or its ITS maintenance contractor.

The company chosen to carry out the work used the existing VMS components as a template for sizing replacement modules. The resulting prototyped kit configured of the company's standard products, but fitted to bespoke sign attachment hardware specifically fabricated for the existing sign.

The VMS cabinet was refurbished in an off-site location using finishes that are designed to last for many years and give the VMS a 'like new' appearance to the travelling public.

The refurbished sign was delivered and installed back on the gantry it had been removed from, then subjected to operational tests through the regional ITS control centre's advanced traffic management system. Additional tests were conducted by exposing components to environmental and proof of performance testing that validated the kit's ability to operate in the harsh environment of Northern Virginia while providing reliable messages to the motoring public.

Sign structures were inspected by VDoT with remediation made prior to the re-installation process.

Existing electrical and communication cabling was removed and replaced with new cabling, connections and power service using the existing raceway.

Because of the off-site techniques that were used for refurbishment, safety was increased and the impact to travellers minimised.
After testing and evaluation of the prototype kit as installed in the refurbished VMS sign case, the contractor refurbished 15 additional signs in the same manner from units VDoT nominated as candidates for retrofitting. These were representative of different vendors' products and sign configurations supplied over the years.

VDoT's approach to retrofitting its old VMS has been an unqualified success: additional retrofits are under contract and by year's end 2011, VDoT is expecting nearly 100 existing signs to have been refurbished.

Cost analysis

From the prototyping to the current projects that are deploying retrofitted VMS in Virginia, it was expected that there would be considerable cost saving in time and expense. Based on the estimated $300,000 per site cost for new signs, installed on new structures, the retrofitted cost is approximately $100,000. The prototyping process took approximately one year. The cost to the DoT for engineering was essentially zero as the work necessary to revise electrical power services and other field elements incidental to the retrofit were included in the contractor's price for retrofitting the signs.

The new signs used the latest technology that provides improved visibility and approximately 50% reduction in power consumption.

Additional savings are realised by minimising the maintenance required to support these 'like new' VMS.

Based on the success of the programme it is expected that many more VMS signs will be retrofitted within the next few years with cost savings of around $200,000 per sign compared to traditional replacement. In addition, this programme is expected to save the DoT approximately $300,000 per year in electricity and maintenance costs.

For more information on companies in this article

Related Content

  • ITS upgrade for George Washington Bridge
    June 29, 2015
    The electronic highway signage system and field devices that provide real-time travel information for the 300,000 daily users of New York’s George Washington Bridge are to undergo a major overhaul in a US$65.1 millio0n project. The Port Authority of New York has approved the project to replace the intelligent transportation system (ITS) which includes the upgrade and replacement of 11 existing variable message signs and the installation of seven new ones; the installation of a new overhead sign structure
  • Moxa provides clear vision for Caldecott Tunnel’s Fourth Bore
    September 15, 2014
    Caldecott Tunnel’s new Fourth Bore is utilising a bespoke high-capacity monitoring and communications network from Moxa. The Caldecott Tunnel connects Contra Costa and Alameda counties in Northern California and traditionally it has suffered severe congestion - especially during peak hours. Opened in 1937 as a twin-bore arrangement, by 1964 the increase in traffic volumes led to a third bore being added. Shortly after the third bore was opened a tidal flow was introduced with the centre bore alternating in
  • Let me hear you, Glastonbury! Oh, and the car park is this way
    June 28, 2023
    SRL takes on traffic management plan for world's largest greenfield music festival
  • Wireless bridges widen options for ITS upgrades
    December 9, 2014
    Antaira Technologies’ marketing engineer Brian Roth explains why the increasing capacity of wireless bridges is reducing the cost of expanding and upgrading ITS networks. With more than half of the world’s population now living in cities, the need for efficient transportation of both people and goods has never been greater and that pressure is unlikely to ease any time soon. Indeed in many regions of the world the rate of urbanisation is still increasing as the demand for rural workers continues to decline.