Skip to main content

Lufft sensors help German smart city

Using data can increase efficiency. Jerg Theurer of Mhascaro explains how one German town is becoming a smart city – with some help from Lufft sensors in a winter roads project
August 10, 2020 Read time: 3 mins
Winter road clearance staff have a lot to do between November and March (© Ee Hh | Dreamstime.com)

The present can look pretty old. The picturesque half-timbered houses in the centre of Herrenberg, Germany, tend to remind passers-by of the past. But the community is becoming a pioneer for smart cities nationwide.

Most smart city applications do not sound like science fiction at all: parking space sensors that show drivers the way to empty spaces, or intelligent garbage containers that automatically request that they be emptied when a certain level is reached.

In order that garbage cans, streets, flower beds and other things provide information about their condition, they must be equipped with sensors and connected to a radio network.

In Herrenberg, data transfer in this Internet of Things (IoT) is done via the Long Range Wide Area Network (LoRaWAN), which is particularly well-suited for smart city applications. Because it uses licence-free frequencies in the industrial, scientific and medical band (863-870 MHz), the municipality has set up a comprehensive data architecture with very low investment costs.

Sensors and data receivers, so-called gateways, communicate via LoRaWAN. The gateways are distributed over the city area at locations as high as possible to guarantee good network coverage. A city like Herrenberg with 30,000 inhabitants can manage with just over a dozen gateways, and in 2018 only two of the receivers were used. These are connected via the internet to servers from which computers can retrieve the data for various applications

The IRS31Pro sensors installed at ground level provide precise data on road conditions
The IRS31Pro sensors installed at ground level provide precise data on road conditions

What’s exciting about the whole thing is that everyone can use the infrastructure - and if necessary expand it themselves. Nevertheless, the data is transmitted in encrypted form and can only be viewed by the respective user. At Mhascaro we use the transmitted data from the sensors and have - in cooperation with the Office for Environment, Technology, Green - developed a platform with which its employees can monitor all sensors in a user-friendly, clear way.

One promising pilot project in Herrenberg is the automated winter service. Road sensors and weather stations provide real-time data, almost like a view of the road from a window. This is a great help for the winter road clearance staff, who have an enormous amount of work to do every season from November to March. Even in winters with little snow, there can always be slippery frost or black ice.

Two Lufft IRS31Pros are currently installed in the Herrenberger Straße, a third will follow soon. Lufft WS10, WS600 and WS800 weather stations provide information on temperature, humidity and pressure, wind speed and direction, solar radiation and precipitation.

The integration into the LoRaWAN network was developed by Mhascaro in close cooperation with Lufft and has been in use since the end of 2018. The measuring instruments tell us something about the current state - but wouldn’t it be more exciting to know what will be?

There’s no crystal ball. Instead, artificial intelligence comes into play. Historical weather data, together with the clearing logs of the winter road clearance service, provide a treasure trove of information from which an algorithm recognises recurring patterns. This could be a correlation between humidity and temperature, for example, because dangerous slipperiness can form even without precipitation.

The larger the database, the more precise and universal its predictions. Therefore, the goal in Herrenberg is to include communities from all over Baden-Württemberg in the project.

In this way, everyone can benefit from each other and make traffic safer in the wet and cold months. Not only in Herrenberg and the surrounding area, but in other places that want to make their operations more intelligent with the help of IoT and artificial intelligence and become smart cities.

Related Content

  • Tactile Mobility's virtual virtuous circle
    January 25, 2021
    Virtual sensors will allow a safer driving experience and reduce road maintenance costs. Tactile Mobility’s Eitan Grosbard talks to David Arminas about what once seemed 'pure sci-fi'...
  • Vaisala takes to the road with new mobile road weather sensor
    November 1, 2012
    Finland-headquartered environmental and industrial monitoring specialist Vaisala is to take to the road to demonstrate the functionality of its new mobile sensor technology to its customers in Europe during the winter. Starting in Vienna, Austria, Vaisala’s Tracks Across Europe mobile road weather tour will take vehicles equipped with the new Vaisala Condition Patrol DSP310 road surface monitoring technology through fifteen European countries that are especially prone to snow and ice. The tour will end at V
  • Preparing for unpredictable precipitation
    August 18, 2015
    ITS solutions are helping streamline winter road maintenance for Delaware and Illinois, two states that must deal with dynamic weather and varying snowfall totals. Andrew Bardin Williams reports. Wilmington and Newark (pronounced new-ark) are two vastly different cities that sit on opposite ends of Delaware. Newark is a sleepy university town of roughly 30,000 residents abutting the state’s western border with Maryland and Pennsylvania, and often gets confused with its larger namesake in New Jersey.
  • Lufft’s new sensor collects road weather information at traffic speed
    April 8, 2014
    Mobile road weather information sensor Marwis, developed by German measurement and control technology company Lufft, can be mounted on any vehicle to collect real-time weather data such as road surface temperature, dew point, water film height, road conditions (humidity, snow, ice and frost) and grip (friction) as well as other environmental data. Marwis measures meteorological data and road condition information 100 times per second. At a driving speed of 80km/h, the mobile sensor records every 20cm, r