Skip to main content

Lufft sensors help German smart city

Using data can increase efficiency. Jerg Theurer of Mhascaro explains how one German town is becoming a smart city – with some help from Lufft sensors in a winter roads project
August 10, 2020 Read time: 3 mins
Winter road clearance staff have a lot to do between November and March (© Ee Hh | Dreamstime.com)

The present can look pretty old. The picturesque half-timbered houses in the centre of Herrenberg, Germany, tend to remind passers-by of the past. But the community is becoming a pioneer for smart cities nationwide.

Most smart city applications do not sound like science fiction at all: parking space sensors that show drivers the way to empty spaces, or intelligent garbage containers that automatically request that they be emptied when a certain level is reached.

In order that garbage cans, streets, flower beds and other things provide information about their condition, they must be equipped with sensors and connected to a radio network.

In Herrenberg, data transfer in this Internet of Things (IoT) is done via the Long Range Wide Area Network (LoRaWAN), which is particularly well-suited for smart city applications. Because it uses licence-free frequencies in the industrial, scientific and medical band (863-870 MHz), the municipality has set up a comprehensive data architecture with very low investment costs.

Sensors and data receivers, so-called gateways, communicate via LoRaWAN. The gateways are distributed over the city area at locations as high as possible to guarantee good network coverage. A city like Herrenberg with 30,000 inhabitants can manage with just over a dozen gateways, and in 2018 only two of the receivers were used. These are connected via the internet to servers from which computers can retrieve the data for various applications

The IRS31Pro sensors installed at ground level provide precise data on road conditions
The IRS31Pro sensors installed at ground level provide precise data on road conditions

What’s exciting about the whole thing is that everyone can use the infrastructure - and if necessary expand it themselves. Nevertheless, the data is transmitted in encrypted form and can only be viewed by the respective user. At Mhascaro we use the transmitted data from the sensors and have - in cooperation with the Office for Environment, Technology, Green - developed a platform with which its employees can monitor all sensors in a user-friendly, clear way.

One promising pilot project in Herrenberg is the automated winter service. Road sensors and weather stations provide real-time data, almost like a view of the road from a window. This is a great help for the winter road clearance staff, who have an enormous amount of work to do every season from November to March. Even in winters with little snow, there can always be slippery frost or black ice.

Two Lufft IRS31Pros are currently installed in the Herrenberger Straße, a third will follow soon. Lufft WS10, WS600 and WS800 weather stations provide information on temperature, humidity and pressure, wind speed and direction, solar radiation and precipitation.

The integration into the LoRaWAN network was developed by Mhascaro in close cooperation with Lufft and has been in use since the end of 2018. The measuring instruments tell us something about the current state - but wouldn’t it be more exciting to know what will be?

There’s no crystal ball. Instead, artificial intelligence comes into play. Historical weather data, together with the clearing logs of the winter road clearance service, provide a treasure trove of information from which an algorithm recognises recurring patterns. This could be a correlation between humidity and temperature, for example, because dangerous slipperiness can form even without precipitation.

The larger the database, the more precise and universal its predictions. Therefore, the goal in Herrenberg is to include communities from all over Baden-Württemberg in the project.

In this way, everyone can benefit from each other and make traffic safer in the wet and cold months. Not only in Herrenberg and the surrounding area, but in other places that want to make their operations more intelligent with the help of IoT and artificial intelligence and become smart cities.

For more information on companies in this article

Related Content

  • Co-operative infrastructure reduces congestion, increases safety
    January 30, 2012
    ITS Japan's Chairman Hiroyuki Watanabe talks to ITS International about his country's progress with cooperative infrastructures and how the experience gained to date can benefit similar initiatives elsewhere. Japan gave the rest of the world a taste of the cooperative infrastructure future when, in 1996, it went live with the Vehicle Information and Communication System (VICS). Designed to provide real-time traffic information and alerts to in-vehicle navigation systems with the dual aims of increasing safe
  • Chicago bus shelters monitor air quality 
    August 2, 2021
    Public can uses smartphones to access data at each shelter
  • Machine vision needs standards to fulfil ITS demands
    May 28, 2014
    No-one should expect the enabling qualities of machine vision to come free of charge but Jason Barnes finds there is still much that ITS stakeholders can do to help reduce costs. After many years of application in high-end solutions for the enforcement and tolling sectors, machine vision is gaining traction in more general areas of traffic management. Nevertheless, those OEMs producing transport-oriented solutions which incorporate machine vision and looking to increase the technology’s share of the ITS mar
  • Theia lenses bring ANPR/LPR into focus
    March 19, 2019
    Theia Technologies says its range of 4K and megapixel NIR corrected lenses for ITS can be used in applications ranging from long-distance traffic surveillance and ANPR/LPR, to ultra-wide views without distortion. At the Vision 2018 show in Stuttgart, the company showed off for the first time its ML610M 6-10mm varifocal lens with 4k resolution, NIR correction for a 2/3” sensor covering the focal range of three prime lenses with up to 87 degrees horizontal field of view. The telephoto lens portfolio is