Skip to main content

Siemens’ Plus+ simplifies signalised intersection wiring

The latest innovation from Siemens comes under the Plus+ banner and encompasses its third generation digitised traffic control system which features distributed intelligence and simplifies cabling. In place of up to 300 wire cores on a single signalised intersection, the Plus+ system uses just four cables arranged in a system of rings, arms and spurs. The four wires, two power (48V) and two data, are used to connect ‘intelligent nodes’ in each traffic light head to be connected to the central controller, re
June 2, 2017 Read time: 2 mins
The latest innovation from 189 Siemens comes under the Plus+ banner and encompasses its third generation digitised traffic control system which features distributed intelligence and simplifies cabling.


In place of up to 300 wire cores on a single signalised intersection, the Plus+ system uses just four cables arranged in a system of rings, arms and spurs. The four wires, two power (48V) and two data, are used to connect ‘intelligent nodes’ in each traffic light head to be connected to the central controller, retaining functionality while minimising wiring and greatly simplifying installation.

Beyond reducing the ducting requirements to a single duct for each run, the ring configuration means that if a cable is severed the power and data can flow the ‘other way’ round the ring to reach the controller and therefore minimise or eliminate outages.  And if a traffic light pole is knocked over, the head(s) it carries will be automatically isolated, allowing the remaining lights to function as normal.

Cost reductions of up to 20% are possible and many existing sensors (loops, push button and so on) can be connected to the system.

The company is already working on pre-wiring traffic light heads in order that electrical installation at the roadside is reduced to connecting only four wires.

For more information on companies in this article

Related Content

  • Jenoptik sees value in international outlook
    June 13, 2024
    Technology is always changing in the traffic management sector. Tobias Deubel of Jenoptik talks to Adam Hill about the past, the future – and the importance of global partnerships
  • The downside of driverless vehicles
    October 27, 2016
    Driverless cars will have a detrimental effect on congestion and security while the road safety benefits can be achieved sooner and cheaper using ADAS, argues Colin Sowman. Many Governments are consulting about the introduction of driverless vehicles and even running trials. As 70% or 80% of crashes are caused by human error, the promise of a crash-free future of driverless, self-driving or autonomous vehicles (call them what you will) is alluring, as are the claims of reduced congestion and lower emissions
  • Queensland extends emergency vehcile priority system
    December 18, 2014
    Following encouraging results from an initial small-scale trial of an emergency vehicle priority system in Queensland, Australia, the scheme is now being extended. In an emergency every second counts. Nowhere is this more graphically illustrated than by the survivability statistics for the time to cardiopulmonary resuscitation of pre-hospital cardiac arrest: at four minutes the survival rate is 22% but by 14 minutes the survival has dropped to 5% - as can be seen from the graph below. There is a similar tre
  • Dynamic lane closures cuts time, cost and congestion on Motorway roadworks
    March 17, 2014
    A combination of technologies is leading to major congestion and cost reductions during roadworks on the UK’s motorway network. Innovative construction programme scheduling technology and the deployment of moveable barriers has achieved substantial savings of money and time on UK motorway roadworks managed by the Highways Agency (HA). This combination has set the scene for a new generation of road usage analysis tools. The HA’s objective was to reduce the congestion caused by lane closures during roa