Skip to main content

Siemens’ Plus+ simplifies signalised intersection wiring

The latest innovation from Siemens comes under the Plus+ banner and encompasses its third generation digitised traffic control system which features distributed intelligence and simplifies cabling. In place of up to 300 wire cores on a single signalised intersection, the Plus+ system uses just four cables arranged in a system of rings, arms and spurs. The four wires, two power (48V) and two data, are used to connect ‘intelligent nodes’ in each traffic light head to be connected to the central controller, re
June 2, 2017 Read time: 2 mins
The latest innovation from 189 Siemens comes under the Plus+ banner and encompasses its third generation digitised traffic control system which features distributed intelligence and simplifies cabling.


In place of up to 300 wire cores on a single signalised intersection, the Plus+ system uses just four cables arranged in a system of rings, arms and spurs. The four wires, two power (48V) and two data, are used to connect ‘intelligent nodes’ in each traffic light head to be connected to the central controller, retaining functionality while minimising wiring and greatly simplifying installation.

Beyond reducing the ducting requirements to a single duct for each run, the ring configuration means that if a cable is severed the power and data can flow the ‘other way’ round the ring to reach the controller and therefore minimise or eliminate outages.  And if a traffic light pole is knocked over, the head(s) it carries will be automatically isolated, allowing the remaining lights to function as normal.

Cost reductions of up to 20% are possible and many existing sensors (loops, push button and so on) can be connected to the system.

The company is already working on pre-wiring traffic light heads in order that electrical installation at the roadside is reduced to connecting only four wires.

For more information on companies in this article

Related Content

  • Developing an integrated WIM/ANPR enforcement system
    July 31, 2012
    The weigh in motion market remains especially buoyant and technological development continues to reflect this. Although there are major differences in operating philosophies, particularly between developed and developing countries, both the numbers of countries using Weigh In Motion (WIM) technology and the numbers of systems that they deploy are on the increase.
  • Keeping a watching brief over traffic flows
    March 11, 2015
    Monitoring traffic flows is set to become an even bigger challengebut a revolution in camera technology can help, as Patrik Anderson explains. By 2025 almost 60% of the world’s population will live in urban areas and in those cities there will be an estimated 6.2 billion private motorised trips every day. In order to manage this level of traffic growth, traffic management centres (TMCs) will need to both increase their monitoring capabilities and be able to detect traffic problems quickly, efficiently and r
  • Traffic signal priority initiatives aid better bus travel
    March 15, 2012
    David Crawford investigates traffic signal priority initiatives developing for better bus travel on the US Pacific Coast Transit patronage rises by an average of 35% along commuter corridors equipped with bus rapid transit (BRT) systems, according to the US Department of Transportation’s Federal Transit Administration (FTA). BRT as defined as bus transit enhanced with ITS systems for better services, is winning new passengers attracted by opportunity to avoid increasing fuel costs and traffic congestion.
  • Cisco’s 5 steps to cyber-resilient roadways
    September 12, 2024
    As the ITS world becomes ever more connected, cybersecurity risks are increasing. Cisco experts Pete Kavanagh and Angela Murphy explain how to overcome key challenges