Skip to main content

Siemens’ Plus+ simplifies signalised intersection wiring

The latest innovation from Siemens comes under the Plus+ banner and encompasses its third generation digitised traffic control system which features distributed intelligence and simplifies cabling. In place of up to 300 wire cores on a single signalised intersection, the Plus+ system uses just four cables arranged in a system of rings, arms and spurs. The four wires, two power (48V) and two data, are used to connect ‘intelligent nodes’ in each traffic light head to be connected to the central controller, re
June 2, 2017 Read time: 2 mins
The latest innovation from 189 Siemens comes under the Plus+ banner and encompasses its third generation digitised traffic control system which features distributed intelligence and simplifies cabling.


In place of up to 300 wire cores on a single signalised intersection, the Plus+ system uses just four cables arranged in a system of rings, arms and spurs. The four wires, two power (48V) and two data, are used to connect ‘intelligent nodes’ in each traffic light head to be connected to the central controller, retaining functionality while minimising wiring and greatly simplifying installation.

Beyond reducing the ducting requirements to a single duct for each run, the ring configuration means that if a cable is severed the power and data can flow the ‘other way’ round the ring to reach the controller and therefore minimise or eliminate outages.  And if a traffic light pole is knocked over, the head(s) it carries will be automatically isolated, allowing the remaining lights to function as normal.

Cost reductions of up to 20% are possible and many existing sensors (loops, push button and so on) can be connected to the system.

The company is already working on pre-wiring traffic light heads in order that electrical installation at the roadside is reduced to connecting only four wires.

For more information on companies in this article

Related Content

  • Microgrids & the new power generation
    August 31, 2021
    Public transportation agencies are turning to microgrids to provide critical resilience in the event of local and regional power interruptions. Gordon Feller looks at projects in Maryland, New Jersey and Massachusetts
  • The control room revolution - LCD screens and IP technology
    July 17, 2012
    Coming soon to a screen near you: Brady O. Bruce and John Stark of Jupiter Systems discuss trends in control room technologies. Perhaps the single most important trend in the control room environment over the last 12-18 months has been the accelerated move towards the adoption of flat-screen Liquid Crystal Display (LCD) technology. Having made their presence felt in the home environment, where they continue to replace outdated cathode ray tube-based technology, LCDs have reached the point where their perfor
  • Trials show fuel savings with connected vehicle technology
    December 16, 2015
    American and European trials point to fuel and emissions reductions. A trial by University of California-Riverside (UC-Riverside) has shown connected vehicle technology has the potential to reduce fuel consumption (and therefore emissions) by up to 18% compared with an uninformed driver.
  • Wireless - the future of vehicle detection
    July 23, 2012
    Peter Cattell of Clearview Traffic analyses different wireless communications methods and explains how these are changing the face of vehicle detection. With the continued expansion of traffic data collection solutions, providing a robust, reliable, scalable and secure method of collecting information becomes increasingly important. Over many years, various mobile wireless technologies have been utilised to make the remote collection of data a reality but recent developments are changing the way that this w