Skip to main content

Jupiter Systems launches PixelNet in Europe

Jupiter Systems has launched its new PixelNet product line in Europe which the company claims is a fundamentally new way to capture, distribute, control and display digital and analogue video sources.
February 3, 2012 Read time: 2 mins
80 Jupiter Systems has launched its new PixelNet product line in Europe which the company claims is a fundamentally new way to capture, distribute, control and display digital and analogue video sources.

PixelNet distributes the process of capturing inputs, routing signals, and displaying content, among intelligent nodes, making it easier and less expensive to design, build, and manage complex control rooms. Jupiter says this revolutionary new technology can display these varied inputs in a wide range of applications, from very large display walls with multiple inputs and outputs to a single desktop.

"This is a game-changing product," said Brady O. Bruce, Jupiter's VP of marketing and strategic alliances. "Using PixelNet nodes, about the size of a paperback book, our users can build a powerful PixelNet visual network quickly and easily. PixelNet is incredibly scalable. To handle an additional input, you just add an input node. To add a new display, you simply connect one more output node. New nodes are automatically detected and integrated by the system. The simplicity is amazing and the video quality is stunning." Based on technology widely used in data communication networks, PixelNet adopts Gigabit Ethernet and Ethernet switches for use with high resolution, real-time video. Using packet-switching technology any information source can be shown on any display, as a window on a single display, or as a window spanning multiple display devices in a display wall. Any source can be shown at any size on any display or array of displays.

Jupiter says PixelNet's greatest benefit is its scalability. The same component parts can scale from a single input sent to a single output to literally hundreds of inputs and outputs. Outputs can be defined as a single display or logically grouped together to create one or more display walls. If another input is added or the entire wall must be expanded, it can be done by simply adding a few PixelNet nodes. There is no need to reconfigure the entire system. Moreover, input and output nodes are hot-pluggable and hot- swappable, and since PixelNet is based on Ethernet technology, the entire system is inherently fault-tolerant.

For more information on companies in this article

Related Content

  • EVs & smart cities: Tritium keeps things moving
    December 3, 2018
    Electric vehicles are widely expected to play a major role in the smarter, cleaner cities of the future. Paul Sernia explains why – and looks at the place of ultra-rapid chargers as part of a versatile public infrastructure Electric vehicles (EVs) are widely expected to play a major role in the smarter, cleaner cities of the future. With no dirty tailpipe, EVs can help improve the polluted air of inner cities. And when deployed as widely shared assets – through car clubs, ride-sharing services and taxi
  • Milesight officially launches 4G Solar-powered camera series
    October 1, 2024
    Product is designed to solve challenges of deploying network cameras in off-grid areas
  • Xerox counts on machine vision for high occupancy enforcement
    October 29, 2014
    Machine vision techniques can provide solutions to some of the traffic planners most enduring problems With a high proportion of cars being occupied by the driver alone, one of the easiest, most environmentally friendly and cheapest methods of reducing congestion is to encourage more people to travel in each vehicle. So to persuade people to share rides, high occupancy lanes were devised to prioritise vehicles with (typically) three of more people on board and in some areas these vehicles are exempt from
  • Need for secure approach to connected vehicle technology
    January 7, 2013
    Accidental or malicious issue of false messages to connected vehicles could result in dire consequences, so secure systems of authentication and certification are likely to be necessary, write Paul Avery and Sandra Dykes. Connectivity among vehicles in urban traffic systems will provide opportunity for beneficial impacts such as congestion reduction and greater safety. However, it also creates security risks with the potential for targeted disruption. Security algorithms, protocols and procedures must take