Skip to main content

Jupiter Systems launches PixelNet in Europe

Jupiter Systems has launched its new PixelNet product line in Europe which the company claims is a fundamentally new way to capture, distribute, control and display digital and analogue video sources.
February 3, 2012 Read time: 2 mins
80 Jupiter Systems has launched its new PixelNet product line in Europe which the company claims is a fundamentally new way to capture, distribute, control and display digital and analogue video sources.

PixelNet distributes the process of capturing inputs, routing signals, and displaying content, among intelligent nodes, making it easier and less expensive to design, build, and manage complex control rooms. Jupiter says this revolutionary new technology can display these varied inputs in a wide range of applications, from very large display walls with multiple inputs and outputs to a single desktop.

"This is a game-changing product," said Brady O. Bruce, Jupiter's VP of marketing and strategic alliances. "Using PixelNet nodes, about the size of a paperback book, our users can build a powerful PixelNet visual network quickly and easily. PixelNet is incredibly scalable. To handle an additional input, you just add an input node. To add a new display, you simply connect one more output node. New nodes are automatically detected and integrated by the system. The simplicity is amazing and the video quality is stunning." Based on technology widely used in data communication networks, PixelNet adopts Gigabit Ethernet and Ethernet switches for use with high resolution, real-time video. Using packet-switching technology any information source can be shown on any display, as a window on a single display, or as a window spanning multiple display devices in a display wall. Any source can be shown at any size on any display or array of displays.

Jupiter says PixelNet's greatest benefit is its scalability. The same component parts can scale from a single input sent to a single output to literally hundreds of inputs and outputs. Outputs can be defined as a single display or logically grouped together to create one or more display walls. If another input is added or the entire wall must be expanded, it can be done by simply adding a few PixelNet nodes. There is no need to reconfigure the entire system. Moreover, input and output nodes are hot-pluggable and hot- swappable, and since PixelNet is based on Ethernet technology, the entire system is inherently fault-tolerant.

For more information on companies in this article

Related Content

  • Proposed system to take guesswork out of choosing a freeway lane
    March 17, 2014
    A fledgling advanced lane management assist system can take the guesswork out of selecting the right lane on a congested freeway, as its inventor Robert Gordon explains. As drivers we’ve all done it and control room staff see it all the time – motorists on congested freeways switching into what they perceive is a faster lane, only to come to a halt a few moments later and watch vehicles in the other lanes continue to move past. Now, by re-analysing readily available data in an advanced lane management as
  • Asfinag makes case for ITS-G5 over 5G
    March 15, 2019
    Asfinag’s Manfred Harrer and Peter Meckel talk to Jason Barnes about the organisation’s first steps towards C-ITS deployments - and why ITS-G5 will be the underpinning standard For quite a number of years, it was assumed that the connectivity required for cooperative ITS (C-ITS) applications and autonomous vehicle (AV) operations would be catered for by a bespoke communications solution/protocol. This would provide localised ad hoc communication in a manner similar to Wi-Fi, and the dedicated bandwidth/n
  • Smart Cities: a journey, not a destination
    June 30, 2021
    As technologies evolve, cities of the future should prepare for expansion by establishing scal­able systems, suggest Benjamin Ho and James Birdsall of Parsons
  • Cooperative infrastructure systems waiting for the go ahead
    February 3, 2012
    Despite much research and technological promise, progress towards cooperative infrastructure system deployment is still slow. Here, Robert Cone and John Miles take a considered look at how and when it might come about. From a systems engineering viewpoint it looks logical and inevitable that vehicles should be communicating between themselves and with the road infrastructure. But seen from a business viewpoint the case is not proven.