Skip to main content

Jupiter Systems launches PixelNet in Europe

Jupiter Systems has launched its new PixelNet product line in Europe which the company claims is a fundamentally new way to capture, distribute, control and display digital and analogue video sources.
February 3, 2012 Read time: 2 mins
80 Jupiter Systems has launched its new PixelNet product line in Europe which the company claims is a fundamentally new way to capture, distribute, control and display digital and analogue video sources.

PixelNet distributes the process of capturing inputs, routing signals, and displaying content, among intelligent nodes, making it easier and less expensive to design, build, and manage complex control rooms. Jupiter says this revolutionary new technology can display these varied inputs in a wide range of applications, from very large display walls with multiple inputs and outputs to a single desktop.

"This is a game-changing product," said Brady O. Bruce, Jupiter's VP of marketing and strategic alliances. "Using PixelNet nodes, about the size of a paperback book, our users can build a powerful PixelNet visual network quickly and easily. PixelNet is incredibly scalable. To handle an additional input, you just add an input node. To add a new display, you simply connect one more output node. New nodes are automatically detected and integrated by the system. The simplicity is amazing and the video quality is stunning." Based on technology widely used in data communication networks, PixelNet adopts Gigabit Ethernet and Ethernet switches for use with high resolution, real-time video. Using packet-switching technology any information source can be shown on any display, as a window on a single display, or as a window spanning multiple display devices in a display wall. Any source can be shown at any size on any display or array of displays.

Jupiter says PixelNet's greatest benefit is its scalability. The same component parts can scale from a single input sent to a single output to literally hundreds of inputs and outputs. Outputs can be defined as a single display or logically grouped together to create one or more display walls. If another input is added or the entire wall must be expanded, it can be done by simply adding a few PixelNet nodes. There is no need to reconfigure the entire system. Moreover, input and output nodes are hot-pluggable and hot- swappable, and since PixelNet is based on Ethernet technology, the entire system is inherently fault-tolerant.

For more information on companies in this article

Related Content

  • Industrial patch panel industry first
    May 23, 2012
    Belden has introduced a new Modular Industrial Patch Panel (MIPP) to its Belden and Hirschmann product lines that achieves what the company claims is a new first for the industry. The MIPP, which is a termination panel for cables that need to be connected to active equipment such as switches, industrial Ethernet devices and any other device with an Ethernet link, combines copper and fibre management into one solution. This makes installation quick and easy, saving time and significantly reducing set-up cost
  • Introducing streaming video and video wall solutions from Skyline
    June 1, 2015
    Visitors to Skyline Technology Solutions’ booth at the ITS America Annual Meeting can experience two innovative products, Claris and Vero. As the company points out, the ability to communicate clearly and efficiently within your own agency and with your partners directly impacts how quickly and safely the collective can respond to events affecting roadways and public spaces. Sharing live streaming video and data with key decision makers and partners is a crucial element to making this happen. Skyline Techno
  • Connecting DoTs with IoT for secure, connected transportation systems
    January 11, 2022
    Michelle Maggiore of Cisco outlines how connected roadways and intersections can help improve safety, reduce traffic congestion, and minimise our carbon footprint
  • Traffic lights: There’s a better way ..
    July 9, 2014
    .. say researchers at Massachusetts Institute of Technology (MIT) who have developed a means of computing optimal timings for city stoplights that they say can significantly reduce drivers’ average travel times. Existing software for timing traffic signals has several limitations, says Carolina Osorio, an assistant professor of civil and environmental engineering at MIT and lead author of a forthcoming paper in the journal Transportation Science that describes the new system, based on a study of traffic