Skip to main content

Xilinx releases automotive qualified Zynq Ultrascale+ MPSoC family

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic
January 16, 2018 Read time: 2 mins

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. 

The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic UltraScale architecture in a single device.

Additionally, the XA Zynq UltraScale+ MPSoC family offers a safety island designed for real-time processing functional safety applications and is certified to meet ISO 26262 ASIL-C level requirements. The programmable logic can create additional safety circuits tailored for specific applications such as monitors, watchdogs or functional redundancy, allowing automotive safety integrity level decomposition and fault-tolerant architecture designs within an integrated circuit.  

Willard Tu, senior director of the Automotive Business Unit at Xilinx, said: "Building on our success in ADAS, with the new XA Zynq UltraScale+ MPSoC family, we are looking forward to enabling the development of next-generation autonomous driving systems with the requisite safety and security. We are proud to expand our automotive product portfolio, continuing to deliver to our customers, and building on our 12+ years of automotive heritage.

Related Content

  • Motown morphs into Mobility City
    August 7, 2018
    Detroit was once a byword for urban decay – but ITS America recently held its annual meeting there. This gave David Arminas a chance to assess how fast Motor City is moving down the road to recovery. Motor City, as Detroit is still called, was on its financial knees only five short years ago. The future looked bleak as the city and greater urban area bled jobs and population. It was on 18 July 2013 that Motown, as Detroit is also known, filed for Chapter 9 bankruptcy protection, the
  • Carbon finance delivers critical support to mass transit schemes
    February 2, 2012
    David Crawford investigates carbon finance in transport. World Bank carbon finance grants are delivering critical support to major mass transit deployments in emerging and developing economies. Only recently operative in the transport sector, the Clean Development Mechanism (CDM, see panel) is designed to generate additional income streams and improve internal rates of return on projects funded from public- and private-sector sources.
  • Wi-SUN: here’s why mesh networking works
    May 10, 2019
    There are several networking options available for smart city planners. Phil Beecher of Wi-SUN Alliance makes the case for wireless mesh networks when it comes to rolling out IoT solutions The Internet of Things (IoT) is growing fast. Connecting thousands of sensors and control systems in bi-directional networks is paving the way for a new generation of smart city and transport infrastructures. For many of these applications, wireless connectivity is essential where cable installation is not practical.
  • Machine vision’s transport offerings move on apace
    June 30, 2016
    Colin Sowman considers some of the latest advances in camera technology and transport-related vision technology applications. Vision technology in the transportation sector is moving apace as technical developments on both the hardware and software sides combine to make cameras more multifunctional with a single digital camera now able to cover a multitude of tasks.