Skip to main content

Xilinx releases automotive qualified Zynq Ultrascale+ MPSoC family

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic
January 16, 2018 Read time: 2 mins

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. 

The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic UltraScale architecture in a single device.

Additionally, the XA Zynq UltraScale+ MPSoC family offers a safety island designed for real-time processing functional safety applications and is certified to meet ISO 26262 ASIL-C level requirements. The programmable logic can create additional safety circuits tailored for specific applications such as monitors, watchdogs or functional redundancy, allowing automotive safety integrity level decomposition and fault-tolerant architecture designs within an integrated circuit.  

Willard Tu, senior director of the Automotive Business Unit at Xilinx, said: "Building on our success in ADAS, with the new XA Zynq UltraScale+ MPSoC family, we are looking forward to enabling the development of next-generation autonomous driving systems with the requisite safety and security. We are proud to expand our automotive product portfolio, continuing to deliver to our customers, and building on our 12+ years of automotive heritage.

Related Content

  • May 14, 2018
    The rise of V2X: it’s time for ITS to put up the shields in cyberspace
    Traffic management has largely been shielded from the sort of malicious hacking that is commonplace in other industries – but with billions of connected devices in the world it won’t stay that way, warn internet experts Keith Golden and Brandon Johnson. Traditionally isolated from networks and the internet over most of its history, the traffic management industry has largely been shielded from malicious hacking and system intrusion that have become commonplace in other industries. However, as the rate of
  • January 23, 2012
    Centralised traffic control, managing changing traffic demands
    Paul van Koningsbruggen and Dave Marples of Technolution BV describe, using a national example from the Netherlands, how smart add-ons to traffic control centres combine to increase cross-centre capabilities and cost-efficiency. Increasingly, traffic management is becoming the natural partner of the civil engineer, improving flows over existing infrastructure to deliver an alternative to laying more blacktop. As in any emerging market, the first steps towards mature traffic management have not necessarily r
  • July 16, 2012
    Adopting universal technology platforms for tolling
    Dave Marples of Technolution argues that the continuing development of tolling-specific onboard equipment is leading us up a blind alley. We should, he says, be looking to realise universal platforms with universal application. The near-future automobile contains information systems of a sophistication to rival a jet airliner of only a few years ago, yet is 'piloted' by a considerably less well-trained individual of highly variable mental and physical capacity, and operated in a hostile, unpredictable and p
  • July 22, 2016
    Automotive industry releases vehicle cybersecurity best practices
    Members of the US Automotive Information Sharing and Analysis Center (Auto-ISAC) have released an overview of comprehensive Automotive Cybersecurity Best Practices, developed as a proactive measure to further enhance vehicle cybersecurity throughout the industry. The Executive Summary has been released publicly on the Auto-ISAC website. The Best Practices provide guidance to assist an organisation's development in seven key topic areas, including governance, risk assessment and management, threat de