Skip to main content

Xilinx releases automotive qualified Zynq Ultrascale+ MPSoC family

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic
January 16, 2018 Read time: 2 mins

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. 

The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic UltraScale architecture in a single device.

Additionally, the XA Zynq UltraScale+ MPSoC family offers a safety island designed for real-time processing functional safety applications and is certified to meet ISO 26262 ASIL-C level requirements. The programmable logic can create additional safety circuits tailored for specific applications such as monitors, watchdogs or functional redundancy, allowing automotive safety integrity level decomposition and fault-tolerant architecture designs within an integrated circuit.  

Willard Tu, senior director of the Automotive Business Unit at Xilinx, said: "Building on our success in ADAS, with the new XA Zynq UltraScale+ MPSoC family, we are looking forward to enabling the development of next-generation autonomous driving systems with the requisite safety and security. We are proud to expand our automotive product portfolio, continuing to deliver to our customers, and building on our 12+ years of automotive heritage.

UTC

Related Content

  • January 9, 2018
    Flir launches thermal sensors to accelerate self-driving cars
    To help advance the reliability required for self-driving cars (SDCs), Flir Systems has launched a high-resolution Thermal Vision Automotive Development Kit (ADK), enabling developers to add an affordable, long-range thermal camera to their advanced driver assistance systems. The solution is said to help drivers and future SDCs see in challenging environments such as darkness, sun glare, fog, smoke and haze. ADK features the high-resolution Flir Boson, which is equipped with an Intel Movidius Myriad 2
  • May 18, 2018
    New ANPR solutions overcome variables
    The sheer range of variables makes it difficult to find a single algorithm to ensure a 100% standard of ANPR. David Crawford investigates new processing technology. Automatic number plate recognition (ANPR), using optical character recognition and image-processing to identify vehicles, plays key roles in traffic monitoring and law enforcement, access and parking control, electronic toll collection, vehicle security and crime deterrence. Overall, system performance is well rated, with high levels of
  • April 2, 2024
    No city is a traffic island
    Beate Kubitz reflects on the rising tide of suburban drivers - and how cities across Europe are dealing with them as worries over air quality multiply
  • September 7, 2017
    Ricardo and Roke Manor to collaborate on next-generation vehicle cyber security
    International technology company Ricardo is to join forces with cyber security specialist Roke Manor Research to develop solutions that will make autonomous and connected transport robust against cyber attack. Many of today’s new vehicles are already connected over the air for telematics and maintenance, for safety systems such as eCall, by consumers using insurance-based monitoring technology, and by the many smartphone apps available to vehicle owners.