Skip to main content

Xilinx releases automotive qualified Zynq Ultrascale+ MPSoC family

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic
January 16, 2018 Read time: 2 mins

Xilinx has made its XA Zynq UltraScale+ MPSoC family available to assist in the development of safety critical advanced driver assistance systems (ADAS) and autonomous driving systems. It is said to deliver the right performance/watt while integrating critical functional safety and security features and is aimed at a range of automotive platforms. 

The product integrates a feature-rich 64-bit quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5 based processing system and Xilinx programmable logic UltraScale architecture in a single device.

Additionally, the XA Zynq UltraScale+ MPSoC family offers a safety island designed for real-time processing functional safety applications and is certified to meet ISO 26262 ASIL-C level requirements. The programmable logic can create additional safety circuits tailored for specific applications such as monitors, watchdogs or functional redundancy, allowing automotive safety integrity level decomposition and fault-tolerant architecture designs within an integrated circuit.  

Willard Tu, senior director of the Automotive Business Unit at Xilinx, said: "Building on our success in ADAS, with the new XA Zynq UltraScale+ MPSoC family, we are looking forward to enabling the development of next-generation autonomous driving systems with the requisite safety and security. We are proud to expand our automotive product portfolio, continuing to deliver to our customers, and building on our 12+ years of automotive heritage.

Related Content

  • Qualcomm expands investment in automotive technology
    January 7, 2016
    Qualcomm subsidiary, Qualcomm Technologies, has expanded its automotive technology portfolio to provide a collection of industry-leading technologies enabling timely innovation across all tiers of the automotive industry through highly integrated solutions in the areas of telematics and connectivity, as well as high definition graphics and multimedia for rich infotainment systems, machine intelligence and sensor fusion for advanced driver assistance systems (ADAS), GNSS location technologies, V2X (vehicle t
  • Trends in automotive technology
    March 14, 2012
    Continental has become a leading player in vehicle technology and telematics. The firm’s executive board chairman Elmar Degenhart describes to Jason Barnes Continental’s views on the ‘megatrends’ of the automotive industry Strategic moves to diversify Continental’s business from rubber-related products began in the late 1990s with the acquisition of ITT Teves and its brake business. This brought on board know-how relating to the then new electronic stability control (ESC) systems which today form an import
  • Adaptive Signal Control – More Than Meets the Eye
    March 9, 2016
    Planned roadway improvements prompted the use of Adaptive Signal Control around Madison – a move that has proved successful as Scott Langer explains. Madison, Wisconsin’s state capital and second largest city (after Milwaukee), is the county seat of Dane County and home of the University of Wisconsin. With affordable housing, nationally ranked schools, one of the best healthcare systems, low unemployment and thriving cultural and community events, last year Madison topped Money magazine’s ‘Best Places to Li
  • In-vehicle communication systems offer major safety benefits
    July 17, 2012
    Michael Schagrin and Raymond Resendes provide an update on the US Department of Transportation's vehicle-to-vehicle programme. The US Department of Transportation's (USDOT's) Vehicle-to- Vehicle (V2V) programme, which is concerned with wireless inter-vehicle communications for safety applications such as crash avoidance/mitigation, is a major safety component of the USDOT IntelliDrive cooperative infrastructure programme.