Skip to main content

White Plains opts for TransCore solution

The city of White Plains in New York is deploying a new SCATS-based adaptive traffic signal control system from TransCore. The system will collect real-time information and then adjust signal timing parameters on a cycle-by-cycle basis on one of the city’s major arterials. Previous conventional traffic control techniques, such as time-of-day signal timing and responsive timing plan selection, were not able to accommodate all the variable and unpredictable traffic conditions experienced on the Tarrytown Road
June 25, 2012 Read time: 1 min
The city of White Plains in New York is deploying a new SCATS-based adaptive traffic signal control system from 139 Transcore. The system will collect real-time information and then adjust signal timing parameters on a cycle-by-cycle basis on one of the city’s major arterials. Previous conventional traffic control techniques, such as time-of-day signal timing and responsive timing plan selection, were not able to accommodate all the variable and unpredictable traffic conditions experienced on the Tarrytown Road, a major arterial that carries around 60,000 vehicles daily and serves as a primary route for commuter access to and from downtown White Plains. Tarrytown Road is also the primary route when traffic is diverted from I-287 and experiences fluctuation in demand throughout the day with significant congestion during morning and afternoon peak traffic hours.

For more information on companies in this article

Related Content

  • Caltrans develops remote remedy for ailing VMS
    February 18, 2014
    A remote diagnostic system for variable message signs keeps Caltrans staff safer and makes them more efficient. District 12 of the California Department of Transportation (Caltrans) maintains roads in Orange County including 292 route miles of freeway lanes and 240 directional miles of full-time high occupancy vehicle or carpool lanes. All of these lanes are controlled from the district’s transportation management centre (TMC) using a network of 58 variable message signs (VMS) positioned alongside or abo
  • Measuring the effectiveness of winter VMS
    August 5, 2013
    A survey into the effectiveness of weather-related variable message signs on a trans-mountain highway has some interesting results, as Alexis Bacelar told ITS Europe. A study in the Massif Central region of France evaluating the usefulness of winter weather warning signs has highlighted the effect of variable message signs on driver behaviour. During the winter of 2009-2010, road operator Massif Central Direction Interdépartementale des Routes (MC DIR) started installing bad weather-specific variable messag
  • Centralised traffic control, managing changing traffic demands
    January 23, 2012
    Paul van Koningsbruggen and Dave Marples of Technolution BV describe, using a national example from the Netherlands, how smart add-ons to traffic control centres combine to increase cross-centre capabilities and cost-efficiency. Increasingly, traffic management is becoming the natural partner of the civil engineer, improving flows over existing infrastructure to deliver an alternative to laying more blacktop. As in any emerging market, the first steps towards mature traffic management have not necessarily r
  • Comprehensive communications combats tolling resistance
    May 19, 2017
    Toll road operator must provide clear, comprehensive and consistent communications to user groups and the local community long before the facility opens. When new tolled highway infrastructure is about to go into service, the construction, management and finance specialists who brought it into being are about ready for a well-deserved celebration. But for the communications and outreach team responsible for building public support for the project – for bringing drivers to the road, and keeping partners and