Skip to main content

Virtual traffic lights ‘can reduce commute times’

Researchers at Carnegie Mellon University (CMU) in the US claim to have found a solution to delays caused by traffic signals. They estimate that replacing physical traffic signals with virtual traffic signals could reduce urban commute times by 40 per cent. Electrical and Computer Engineering professor Ozan Tonguz’s research on virtual traffic lights uses connected vehicle technology, enabling vehicles to manage traffic control without infrastructure based traffic lights. Using the technology, virtua
January 16, 2015 Read time: 2 mins
Researchers at Carnegie Mellon University (CMU) in the US claim to have found a solution to delays caused by traffic signals. They estimate that replacing physical traffic signals with virtual traffic signals could reduce urban commute times by 40 per cent.

Electrical and Computer Engineering professor Ozan Tonguz’s research on virtual traffic lights uses connected vehicle technology, enabling vehicles to  manage traffic control without infrastructure based traffic lights.

Using the technology, virtual traffic lights will appear on the driver’s windshield as they approach an intersection. “When the driver is looking through the windshield, they’ll see that going straight is a green light, and turning right is a red light,” Tonguz explains. “It’s a seamless process, the driver does not get involved in this decision making.”  The virtual traffic light will turn off once the driver proceeds through the intersection.

Tonguz claims that virtual traffic lights will do more than lower commuter’s stress levels. He says they’ll mitigate traffic congestion, reduce commute times, decrease the carbon footprint of vehicles, and lead to a greener environment.

Related Content

  • What actually happens if we do #FreetheMIBs?
    May 1, 2020
    Q-Free’s #FREEtheMIBs campaign highlights the use of manufacturer-specific data output, storage and communication protocols in traffic lights and ITS systems.
  • Driver aids make inroads on improving safety
    November 12, 2015
    In-vehicle anti-collision systems continue to evolve and could eliminate some incidents altogether. John Kendall rounds up the current developments. A few weeks ago, I watched a driver reverse a car from a parking bay at right angles to the road, straight into a car driving along the road. The accident happened at walking pace, no-one was hurt and both cars had body panels that regain their shape after a low speed shunt.
  • Introducing the camera that can see round corners
    June 26, 2015
    Ford is introducing a new camera technology that can see around corners, even when drivers cannot, in a bid to alleviate the problems involved with exiting blind junctions and help avert accidents. The innovative Front Split View Camera, now available as an option in the all-new Ford S-MAX and Galaxy, displays to the driver a 180-degree view from the front of the car, using a video camera in the grille. At a blind junction or exiting a driveway, the camera enables drivers to easily spot approaching vehic
  • Utah Department of Transportation: How we’re using traffic analytics software
    February 4, 2025
    Our use of Iteris ClearGuide lets our traffic operations engineers interpret critical probe traffic data without the need for statisticians and software developers