Skip to main content

Virtual traffic lights ‘can reduce commute times’

Researchers at Carnegie Mellon University (CMU) in the US claim to have found a solution to delays caused by traffic signals. They estimate that replacing physical traffic signals with virtual traffic signals could reduce urban commute times by 40 per cent. Electrical and Computer Engineering professor Ozan Tonguz’s research on virtual traffic lights uses connected vehicle technology, enabling vehicles to manage traffic control without infrastructure based traffic lights. Using the technology, virtua
January 16, 2015 Read time: 2 mins
Researchers at Carnegie Mellon University (CMU) in the US claim to have found a solution to delays caused by traffic signals. They estimate that replacing physical traffic signals with virtual traffic signals could reduce urban commute times by 40 per cent.

Electrical and Computer Engineering professor Ozan Tonguz’s research on virtual traffic lights uses connected vehicle technology, enabling vehicles to  manage traffic control without infrastructure based traffic lights.

Using the technology, virtual traffic lights will appear on the driver’s windshield as they approach an intersection. “When the driver is looking through the windshield, they’ll see that going straight is a green light, and turning right is a red light,” Tonguz explains. “It’s a seamless process, the driver does not get involved in this decision making.”  The virtual traffic light will turn off once the driver proceeds through the intersection.

Tonguz claims that virtual traffic lights will do more than lower commuter’s stress levels. He says they’ll mitigate traffic congestion, reduce commute times, decrease the carbon footprint of vehicles, and lead to a greener environment.

Related Content

  • Europe’s road safety gains have stagnated EU
    March 17, 2017
    Europe will fail to meet its road death targets as enforcement budgets are slashed and drivers face an epidemic of distractions. The European Union will not achieve its aim of halving the number of people killed on its roads each year by 2020, delegates to Tispol’s (the organisation of European traffic police) annual conference in Manchester were told. “The target will be missed because there was only a 17% decrease in road fatalities across Europe between 2010 and 2015 when [the rate of reduction] should h
  • The red light camera choice: 60 killed or save US$231 million a year
    June 5, 2015
    David Crawford investigates new cost-benefit analysis of red light cameras. US states can now realistically calculate the economic benefits of using red light safety cameras, alone or in combination with other measures, to cut road traffic accident levels. The results could be of material value in making the case for the cameras as a number of state legislatures continue to debate their acceptability.
  • Active traffic management - challenges and benefits
    April 12, 2013
    Minnesota DoT has built one of the most intensive Active Traffic Management (ATM) systems on the road today. Like many ITS deployments, the state has gained benefits but also faces many challenges, as Pete Goldin reports. Smart Lanes is the brand name of Minnesota Department of Transportation’s (MnDoT) ATM system on I-35W in the Twin Cities Metro Area. The original system covered 16 miles of I-35W south of Minneapolis starting in 2009, and was extended by two miles in 2011. Additional ATM equipment was inst
  • Developments in signal head lens technology
    February 3, 2012
    Heads and tails Leading manufacturers of traffic signal systems discuss developments in signal head technology as well as some of the legacy issues which affect future deployments Transparent model of Dambach's ACTROS.line technology, showing the bus electronics in the signal head Cowls could be superseded by the greater use of lens technology