Skip to main content

V2V penetration in new vehicles to reach 62% by 2027

The latest research from ABI Research indicates that vehicle-to-vehicle technology based on Dedicated Short Range Communication (DSRC) using the IEEE 802.11p automotive W-Fi standard will gradually be introduced in new vehicles driven by mandates and/or automotive industry initiatives, resulting in a penetration rate of 61.8% by 2027. ABI Research VP and practice director, Dominique Bonte comments, “While in the US there is a real possibility for a DoT mandate depending on the outcome of the large scale V2X
March 20, 2013 Read time: 2 mins
The latest research from 5725 ABI Research indicates that vehicle-to-vehicle technology based on Dedicated Short Range Communication (DSRC) using the IEEE 802.11p automotive W-Fi standard will gradually be introduced in new vehicles driven by mandates and/or automotive industry initiatives, resulting in a penetration rate of 61.8% by 2027.

ABI Research VP and practice director, Dominique Bonte comments, “While in the US there is a real possibility for a DoT mandate depending on the outcome of the large scale V2X trial being held in Michigan, in Europe the CAR 2 CAR Communication Consortium which counts twelve car OEMS has signed a Memorandum of Understanding to deploy cooperative Intelligent Transport Systems and Services (C-ITS) in Europe from 2015 based on common technical specifications in line with the 2010 EU Directive calling for an urgent implementation of cooperative ITS. Similar initiatives exist in Asia (Japan, Korea and China).”

Despite increasing momentum driven by both governments/regulators and the automotive industry, the deployment of V2V and even more so V2I will take time, as the real safety benefits of V2X only can be realised when a sufficiently large part of the installed vehicle base is connected. However, complimentary technologies such as ADAS on the low end and cellular connectivity on the high end will allow emulating some of the ITS functionality defined for V2X. In particular, the rapid emergence of LTE Advanced featuring very low latency is a good candidate for offering vehicle-to-vehicle communications awaiting the widespread availability of dedicated V2V technology.

For more information on companies in this article

Related Content

  • Advanced V2X solution combines DSRC and GNSS
    December 5, 2014
    Swiss wireless communications specialist and Australia connected vehicle technology provider Cohda Wireless have joined forces to develop an advanced vehicle to vehicle/infrastructure (V2X) solution. Offering best in class performance, the MK5 was recently demonstrated at the 2014 ITS World Congress in Detroit and is suitable for first-mount automotive electronics, aftermarket products and roadside infrastructure. Cohda’s dedicated short-range communications (DSRC) based V2X system uses accurate satel
  • Autotalks demos China V2X interoperability
    November 9, 2020
    Company worked with five car makers including Great Wall, Dongfeng and Brilliance Auto
  • SwRI and USDOT operate connected vehicle affiliated test bed
    December 9, 2013
    In the US, the Texas-based Southwest Research Institute (SwRI) is operating a connected vehicle affiliated test bed in cooperation with the US Department of Transportation (USDOT) Research and Innovative Technology Administration. The DOT test bed project facilitates information exchange as well as access to tools and resources across other test bed facilities to support and encourage consistent future deployment of connected vehicle technologies. The project aims to advance the technology for full deplo
  • High level support for US DOT decision on vehicle to vehicle technology
    February 4, 2014
    The US Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) is to begin taking steps to enable vehicle-to-vehicle (V2V) communication technology for light vehicles. This technology would improve safety by allowing vehicles to communicate with each other and ultimately avoid many crashes altogether by exchanging basic safety data, such as speed and position, ten times per second. DOT research indicates that safety applications using V2V technology can address a large