Skip to main content

UK researchers take first prize for traffic control system that thinks for itself

A team of scientists at the University of Huddersfield, led by Dr Mauro Vallati of its Department of Informatics has won a prize for its research into the use of artificial intelligence (AI) as a way of keeping the traffic flowing. The second Autonomic Road Transport Systems competition which took place under the aegis of the long-running EU-backed research framework named European Co-operation in Science and Technology (COST). Dr Vallati formed a team with two fellow researchers in the field whom he h
November 13, 2015 Read time: 2 mins
A team of scientists at the University of Huddersfield, led by Dr Mauro Vallati of its Department of Informatics has won a prize for its research into the use of artificial intelligence (AI) as a way of keeping the traffic flowing. The second Autonomic Road Transport Systems competition which took place under the aegis of the long-running EU-backed research framework named European Co-operation in Science and Technology (COST).  

Dr Vallati formed a team with two fellow researchers in the field whom he had worked with previously,Dr Daniele Magazzeni of King’s College London and Professor Bart De Schutter of Holland’s Delft University of Technology.  The trio developed a road traffic support system software package especially for the COST competition, but it drew on existing work by the university’s planning, autonomy and representation of knowledge (PARK) project and will feed into the ongoing Greater Manchester project.

The PARK team, headed by Professor Lee McCluskey, is developing a system that can control huge areas of a city’s transport network, populated by upwards of 10,000 vehicles.  Cameras and sensors feed data to a computer which makes its own decisions, such as the duration of green light phases at traffic lights. McCluskey chairs the COST sub-project Towards Autonomic Road Transport Support Systems.

A simulation has been tested for Greater Manchester, and the next phase is to develop the system using real-life data supplied by that city’s transport authority.

The researchers claim its breakthrough is scaleability, meaning that it has the potential to control large areas of road traffic.  The contest organisers also sought evidence of system resilience and the capacity to respond to a wide range of events.

“The goal of autonomic transport systems is to reduce reliance on decision-making by human controllers,” said Dr Vallati.  “Improved traffic flows would lead to wide range of environmental and economic benefits.”
UTC

Related Content

  • May 15, 2017
    University research shows a few self-driving cars can improve traffic flow
    The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by the University of Illinois at Urbana-Champaign. Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engine
  • November 7, 2013
    Smart Spanish city trials cell-based traffic management
    David Crawford reports on an urban electronic nervous system. The northern Spanish city of Santander – historically a port - is now an emerging technology showcase attracting global attention as a prototype for a medium-sized smart city of the future. In a move to determine the optimal use of available data, it is creating a de-facto experimental laboratory for sensor and mobile phone-based urban traffic management and environmental monitoring innovations.
  • October 23, 2015
    TRL to contribute to new autonomous vehicle research programme
    The UK’s Transport Research Laboratory (TRL) the, has announced it is part of a new US$17 million five-year research programme to develop fully autonomous cars. The programme, jointly funded by Jaguar Land Rover and the Engineering and Physical Sciences Research Council (EPSRC), will look at some key technologies and questions that need to be addressed before driverless cars can be allowed on the roads without jeopardising the safety of other road users, including cyclists and pedestrians. TRL is the on
  • September 23, 2014
    Does ADAS create as many problems as it solves
    Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation. Safety research suggests that 90% of accidents are thought to be a result of driver inattentiveness to unpredictable or incomplete information and the vision is that highly automated vehicles will lead to accident-free driving in the future.