Skip to main content

TTI, TxDOT to test connected vehicle technology

Texas A&M Transportation Institute (TTI) has teamed up with the Texas Department of Transportation (TxDOT) to undertake a four-year project to test connected vehicle technology on a portion of I35 in the state. Funded by a US Department of Transportation (USDOT) grant, the US$2 million project, called I-35 Connected Work Zone, will initially focus on improving freight movement along the construction corridor by providing long-haul trucks a steady stream of traveller information through on-board devices c
January 9, 2015 Read time: 2 mins
Texas A&M Transportation Institute (TTI) has teamed up with the 375 Texas Department of Transportation (TxDOT) to undertake a four-year project to test connected vehicle technology on a portion of I35 in the state.

Funded by a 324 US Department of Transportation (USDOT) grant, the US$2 million project, called I-35 Connected Work Zone, will initially focus on improving freight movement along the construction corridor by providing long-haul trucks a steady stream of traveller information through on-board devices capable of receiving work zone infrastructure data. That information includes lane-closure locations, delay lengths and projected delays up to a week in advance.

“In this first phase of the Connected Work Zone project, the initial fleet of long-haul commercial trucks will be equipped with communication equipment and the technology needed to receive the existing I-35 traveller information and data we developed for the Waco District I-35 construction project,” says TTI research scientist Robert Brydia. Highway sensors gather real-time travel information on traffic conditions which will be transmitted to the trucks in a way that will not distract truck drivers.

Freight movement efficiency has long been hindered by a lack of reliable traveller information. The goal of the USDOT’s Freight Advanced Traveler Information System (FRATIS) program is to optimise freight operations and therefore the overall transportation system.

The current project is an enhancement to a Texas component of the FRATIS project currently under way among some smaller trucking firms in the Dallas-Fort Worth area. That effort involves using software to optimise processes for businesses that rely on short-haul freight movements. Minimising empty truck trips and the rerouting of trips to avoid congestion can help reduce operating costs, thereby reducing shipping costs and perhaps, eventually, providing lower prices for consumers as well.

Although the next phase of the project has not been defined, it could involve equipping passenger vehicles with the same type of communication equipment capable of receiving real time corridor information.

“Research and testing are vital steps forward as connected-vehicle technology moves from the cutting edge to the every day,” says TTI assistant agency director Christopher Poe. “This project is a natural next step in the long-term partnership of TTI and TxDOT working together to improve transportation for Texas and the nation.”

For more information on companies in this article

Related Content

  • App informs drivers of delays during Long Beach bridge replacement
    June 6, 2014
    David Crawford previews a work zone travel breakthrough. In February 2014, the Port of Long Beach in California launched what it claims is a groundbreaking construction zone navigation aid - LB Bridge mobile app. The app is designed to help drivers during the Gerald Desmond Bridge replacement programme by keeping them up to date on activity and the ensuing traffic diversions when construction starts in summer 2014. The unusually content-rich app is designed to convey current project news (enlivened by phot
  • AT&T, Ford, Nokia and Qualcomm Technologies to test C-V2X in U.S.
    November 3, 2017
    American Telephone & Telegraph (AT&T), Ford, Nokia and Qualcomm Technologies are teaming up with the intention of accelerating the development of connected cars by trailing Cellular-V2X (C-V2X) technologies in the U.S. These tests are aimed at showing automakers and road operators the anticipated cost-efficient benefits associated with embedded C-V2X in vehicles and synergies between the deployment of cellular base stations and roadside infrastructure. Initial testing is expected to begin later this year.
  • EdgeVis removes bandwidth barriers to mobile streamed video
    October 26, 2017
    A new generation of video compression can lower transmission costs of data and make streaming from mobile and body-worn cameras a reality, as Colin Sowman discovers. Bandwidth limitations have long been the bottleneck restricting the expanded use of video streaming for ITS, monitoring and surveillance purposes. Recent years have seen this countered to some degree by the introduction of ‘edge processing’ whereby ANPR, incident detection and other image processing is moved into (or close to) the camera, so
  • Researchers use drones to assess infrastructure damage
    March 6, 2015
    Researchers at the University of New Mexico, along with collaborators at San Diego State University and BAE Systems, are utilising drone technology to develop an operational prototype to assess infrastructure damage. The drone will use innovative remote sensing approaches and cameras mounted on low cost aircraft or unmanned drones to detect and map fine scale transportation infrastructure damage such as cracks, deformations and shifts immediately following natural disasters such as earthquakes, floods and h