Skip to main content

TRW pedestrian protection system

TRW Automotive Holdings has developed an advanced pedestrian protection system that uses up to three remote acceleration sensors (RAS) located in the front bumper area.
January 26, 2012 Read time: 2 mins
RSS601 TRW Automotive Holdings has developed an advanced pedestrian protection system that uses up to three remote acceleration sensors (RAS) located in the front bumper area. These sensors continuously transmit acceleration signals to an electronic control unit (ECU) which analyses the sensor data. In the event of a collision, the system will determine if the vehicle has struck a human body (of various sizes) or another object. If a pedestrian collision is detected, the system triggers hood lifter mechanisms – located on either underside of the hood – to activate and create more space between the hood and the hard engine components to help reduce potential injury.

"Our goal is a reliable system based on proven technology for the hardware, software and control algorithms," said Martin Thoone, vice president, TRW global electronics engineering. "In the pedestrian protection system, the RAS can be mated to a stand-alone ECU, but the more cost effective solution is to have the software integrated into an existing TRW airbag control unit."

TRW says the preferred integrated option also offers better interactions between the frontal impact sensing and pedestrian impact sensing algorithms; resulting in enhanced overall sensing performance. System advantages also include: sensor packaging flexibility across a wide range of vehicle applications; an electronic communication interface that works within established industry protocols, helping ensure high compatibility and reliability; and the use of TRW's proprietary X-RISA_8 pedestrian impact sensing algorithm.

For more information on companies in this article

Related Content

  • Point Grey celebrates 15 years of innovation
    July 3, 2012
    Point Grey, one of the world's largest and most innovative manufacturers of industrial digital cameras for machine vision, bioscience, traffic, and GIS applications is celebrating 15 years in business. Founded in 1997, the company has evolved from a handful of university students to a thriving global business pushing the boundaries of imaging technology. The company has grown to offer a comprehensive portfolio of over 115 camera models used in a variety of industries including machine vision, bioscience, tr
  • ITS-NY Announces 2012 Project of the Year Award Winners
    June 13, 2012
    The Intelligent Transportation Society of New York (ITS-NY) has announced the 2012 ITS-NY Project of the Year Winners at its Nineteenth Annual Meeting and Technology Exhibition in Saratoga Springs, NY. “These winning projects feature ITS and technologies at work in New York State to improve traveller mobility and safety, as well as the efficiency of New York State’s transportation system across all modes of travel,” said Dr Isaac Takyi, ITS-NY president. Winning Projects were announced in the following ITS
  • Getting C/AVs from pipedream to reality
    October 17, 2019
    The UK government has suggested that driverless cars could be on the roads by 2021. But designers and engineers are grappling with a number of difficult issues, muses Chris Hayhurst of MathWorks Earlier this year, the UK government made the bold statement that by 2021, driverless cars will be on the UK’s roads. But is this an achievable reality? Driverless technology already has its use cases on our roads, with levels of autonomy ranked on a scale. At one end of the spectrum, level 1 is defined by th
  • Ford Research looking to help drivers manage stressful situations on the road
    June 28, 2012
    Engineers in the Ford Research and Innovation labs are developing ways to help the driver stay focused in busy situations by intelligently managing incoming communications. Data from the sensing systems of driver-assist technologies can be used to determine the amount of external demand and workload upon a driver at any given time including traffic and road conditions. In addition, Ford continues its health and wellness research with the development of a biometric seat, seat belt and steering wheel that can