Skip to main content

TRW pedestrian protection system

TRW Automotive Holdings has developed an advanced pedestrian protection system that uses up to three remote acceleration sensors (RAS) located in the front bumper area.
January 26, 2012 Read time: 2 mins
RSS601 TRW Automotive Holdings has developed an advanced pedestrian protection system that uses up to three remote acceleration sensors (RAS) located in the front bumper area. These sensors continuously transmit acceleration signals to an electronic control unit (ECU) which analyses the sensor data. In the event of a collision, the system will determine if the vehicle has struck a human body (of various sizes) or another object. If a pedestrian collision is detected, the system triggers hood lifter mechanisms – located on either underside of the hood – to activate and create more space between the hood and the hard engine components to help reduce potential injury.

"Our goal is a reliable system based on proven technology for the hardware, software and control algorithms," said Martin Thoone, vice president, TRW global electronics engineering. "In the pedestrian protection system, the RAS can be mated to a stand-alone ECU, but the more cost effective solution is to have the software integrated into an existing TRW airbag control unit."

TRW says the preferred integrated option also offers better interactions between the frontal impact sensing and pedestrian impact sensing algorithms; resulting in enhanced overall sensing performance. System advantages also include: sensor packaging flexibility across a wide range of vehicle applications; an electronic communication interface that works within established industry protocols, helping ensure high compatibility and reliability; and the use of TRW's proprietary X-RISA_8 pedestrian impact sensing algorithm.

For more information on companies in this article

Related Content

  • Boston partners with traffic app Waze on traffic management
    February 17, 2015
    Boston, US, has formed a new data-sharing partnership with Google-owned traffic app Waze, to enable the city’s drivers, cyclists and pedestrians to check real time traffic conditions on Boston’s streets. The partnership aims to help improve traffic flow in Boston in two principal ways. As part of the partnership, the City will share information on expected road closures with the 400,000 users of Waze in Greater Boston, helping them find the best way to get around town. In addition, aggregated information o
  • Sony launches polarised camera
    November 23, 2018
    Sony Europe’s Image Sensing Solutions says its polarised category of machine vision camera captures polarised light in four different angles. The XCG-CP510 GS CMOS camera simplifies stress inspection, contrast improvement, scratch detection, object detection, removal and enhancement from a single image capture, the company adds. The camera’s module is expected to deliver 5.1 MP polarised B/W images at 23 fps, transmitted over a GigE interface. Sony’s camera includes multiple trigger modes such as edge det
  • Telegra tackle integrated corridor management
    March 29, 2017
    Coordination is the key to successful integrated corridor management, argues Telegra’s chief operating officer, Branko Glad. The Centre for Economics and Business Research (CEBR) has calculated that in 2013, traffic congestion cost American citizens $124 billion ($78 billion of wasted time and fuel and $45 billion in indirect losses). In 2030 this figure is predicted to rise to $186 billion.
  • Debating the future development of ANPR
    July 31, 2012
    What future is there for automatic number plate recognition? Will it be supplanted by electronic vehicle identification, or will continuing development maintain the technology's relevance? In recent years, digitisation and IP-based communication networks have allowed Automatic Number Plate Recognition (ANPR) to achieve ever-greater utility and a commensurate increase in deployments. But where does the technology go next - indeed, does it have a future in the face of the increasing use of, for instance, Dedi