Skip to main content

TransCore wins Scats deployment contract

TransCore has been selected by Cobb County Department of Transportation, Atlanta, to expand its Scats (Sydney Coordinated Adaptive Traffic System) adaptive traffic signal control technology with an additional 75 intersections, nearly doubling its use of the technology and making it the second largest deployment in the United States. The first phase of 26 intersections in the town centre area are now in operation with the remaining intersections expected to be fully operational by October 2012.
April 27, 2012 Read time: 2 mins
139 Transcore has been selected by Cobb County Department of Transportation, Atlanta, to expand its Scats (Sydney Coordinated Adaptive Traffic System) adaptive traffic signal control technology with an additional 75 intersections, nearly doubling its use of the technology and making it the second largest deployment in the United States. The first phase of 26 intersections in the town centre area are now in operation with the remaining intersections expected to be fully operational by October 2012.

Cobb County, located in the northwest portion of metropolitan Atlanta, first installed adaptive signal control technology in 2006 along Cobb Parkway (US 41) and the Cumberland Galleria area surrounding the I-75/I-285 interchange. Now, in an effort to accelerate mobility in the Northwest Corridor, one of the most congested areas in the metropolitan region, the system’s use will be expanded along US 41, I-75 and I-575.

An intelligent transportation system with adaptive capabilities can respond to traffic patterns as they occur and reduce choke points in the county’s roadway network and subsequently reduce vehicle emissions, fuel consumption, and travel times. As Tim Fischer, TransCore’s vice president for the southeast region, explains, “What makes the Scats adaptive system appealing is that each corridor can be configured differently versus using the traditional time-based, or actuated signal controls. Other systems don’t have this level of configurability or flexibility.”

Scats, originally developed for Sydney Australia by the Roads and Transport Authority, operates in real-time to adjust signal timing in response to changes in traffic demand and provides immediate and historical traffic information for Cobb County traffic engineers. It is currently one of the most widely used adaptive traffic control systems around the world controlling more than 30,000 intersections globally and more than 1,000 intersections in the United States.

For more information on companies in this article

Related Content

  • Autotalks and Applied in US V2X deployment
    July 28, 2020
    Autotalks’ chipsets to be in roadside units such as traffic lights in three US states
  • Lidar lets planners see big picture in Chattanooga
    April 14, 2025
    The city of Chattanooga, Tennessee, is attempting to make its streets safer by using the largest deployment of Lidar-based traffic detection in the US. Adam Hill reports…
  • Georgia gets SCOOT
    May 9, 2013
    Siemens has won a new SCOOT (Split Cycle Offset Optimisation Technique) project in the US State of Georgia, in an area to the north of Atlanta along State Route 9. In the first phase, SCOOT will control thirty-three intersections in the towns of Alpharetta, Roswell and Sandy Springs and it is expected that more intersections will be added to the system over the next few years. The project is being managed by Siemens USA with local dealer Temple.
  • Airborne traffic monitoring - the future?
    March 1, 2013
    A new frontier in the quest to monitor road traffic is opening up… but using airborne drones to reduce the jams comes with some thorny issues. Chris Tindall reports. Imagine if you could rely on a system that provided all the data you needed to regulate traffic flow, route vehicles and respond swiftly to emergencies for a fraction of the cost of piloting a helicopter. That system exists, but as engineers and traffic managers start to explore the potential of unmanned aerial vehicles (UAVs) – more commonly k