Skip to main content

Swarco delivers traffic control to University of Cambridge

Swarco’s traffic control technology has been chosen by construction company SDC to regulate heavy vehicle and plant traffic movements over a two-year building project at the University of Cambridge’s Civil Engineering department. Called ITC-3, the solution is designed for a range of traffic management applications and can be connected to a variety of control and monitoring systems. The ITC-3 can be delivered for pedestrian control and small intersections, as a version with six phases and up to 16
December 6, 2017 Read time: 2 mins

129 Swarco’s traffic control technology has been chosen by construction company SDC to regulate heavy vehicle and plant traffic movements over a two-year building project at the University of Cambridge’s Civil Engineering department.

Called ITC-3, the solution is designed for a range of traffic management applications and can be connected to a variety of control and monitoring systems.

The ITC-3 can be delivered for pedestrian control and small intersections, as a version with six phases and up to 16 detectors. For most intersections, the 3U rack comes with up to 24 phases and 40 detectors. Versions with 32 phases and up to 128 detectors can be configured for complex applications or to cover more than one intersection.

Mark Hickmott of Swarco Traffic, said: “SDC now has a highly reliable and bespoke system which can deal with every eventuality. The life costs of this system are substantially lower than temporary traffic signals.”

UTC

Related Content

  • December 12, 2023
    $1.5m North Carolina traffic signal controllers deal for Q-Free
    Firm says 600 2070LX ATC units, built in the US, will be delivered within 60 days
  • August 10, 2016
    Calculating the cost of stellar solutions
    The increasing availability and accuracy of global navigation satellite system (GNSS) is opening up low-cost options in many areas as David Crawford finds out. Boosting commercialisation of European global navigation satellite system (EGNSS) technologies for ITS initially depends heavily on demonstrating competitive and cost/benefit advantages obtainable from the deployment of EGNOS (the current European Geostationary Navigation Overlay Service), and ultimately the EU’s Galileo constellation (see box). So,
  • March 4, 2019
    Transport Systems Catapult boss: ‘We can’t build our way out of congestion’
    The UK Transport Systems Catapult’s CEO Paul Campion talks to Colin Sowman about helping companies develop tomorrow’s solutions – and explains why you can never build your way to empty roads The future of mobility is going to be driven by services.” That’s the opening position of Paul Campion, CEO of the Transport Systems Catapult (TSC) – the UK government organisation set up to help boost transport-related employment and the economy. Campion was previously with IBM and describes himself as a ‘techno o
  • September 26, 2019
    Sign language reduces human error says Clearview
    Wrong-way warning systems and advanced queue detection can help to reduce human error. They can also cut road accidents – and therefore road deaths, says Clearview Intelligence Where were nearly 1,800 deaths on the UK’s roads in 2018 – an average of five people dying each day. The largest single cause of serious injury is crashes at junctions (accounting for 33% of incidents), while the largest single cause of death was run-off road crashes (30%) “With vehicles increasingly being designed with saf