Skip to main content

Smart signal software ‘has potential for ICM’

Software developed by researchers from the University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway. A new version of the software has been deployed at more than fifty intersections managed by the Minnesota Department of Transportatio
September 26, 2013 Read time: 2 mins
Software developed by researchers from the 584 University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway.

A new version of the software has been deployed at more than fifty intersections managed by the 2103 Minnesota Department of Transportation (MnDOT), enabling Smart signal to retrieve traffic data direct from signal controllers without any additional hardware instrumentation, reducing both the time and cost associated with implementation.

Researchers are now turning their attention to investigations into how Smart signal could be used as part of an integrated corridor management (ICM) system.

The proposed ICM system would use the performance measures generated by the system to diagnose incidents on signalised arterials and propose new signal control strategies that could be deployed in real time to mitigate traffic congestion.

The system also aims to reduce overall network congestion by using the available capacity of parallel routes, for example, by rerouting traffic from a freeway to a parallel signalised arterial during times of peak traffic congestion or when a crash occurs. In this case, Smart signal could help identify and predict the effects of rerouting travellers to the arterial and then automatically adjust signal timing to compensate for the increased traffic.

The study tested the proposed ICM system using a traffic simulation and results have shown that the system significantly reduces network congestion; the average delay and number of stops per vehicle was reduced and average vehicle speed increased.

For more information on companies in this article

Related Content

  • Mileage based charging offers secure future for funding
    August 10, 2016
    HNTB’s Matthew Click sets out why a move to mileage-based pricing is inevitable. Infrastructure is the most neglected yet the most critical engine of our society, and our continued indifference could lead to a dystopian future. Our roads, bridges and highways have been largely passed by in the digital age—marginalised in an era when funding is limited and stewardship of physical assets has given way to our preoccupation with technological innovation and data—the stuff of the virtual realm.
  • Mcity offers cloud C/AV solution to ACM
    February 1, 2021
    OS has been integrated at research group's smart mobility test centre in Michigan
  • Deadlines approach for Europe’s automatic crash alert system
    September 15, 2016
    The EU-co-funded I_ HeERO (Infrastructure_ Harmonised eCall European Pilot) project is working to ensure the readiness of national networks of call centres - known as public safety answering posts (PSAPs) - to deal with automated crash alerts arriving via the continent-wide 112 emergency phone number. Following on from its HeERO and HeERO2 pre-deployment predecessors, which enjoyed €16m (US$17.76m) in EU funding, the new initiative runs from 1 January 2015 to 31 December 2017. It has €30.9 million (US$34.
  • ITS advancement lays beyond benefit-cost analysis
    May 29, 2013
    Shelley Row, former Director of the US Department of Transportation’s ITS Joint Program Office, gives her views on the way forward for the industry. We, as intelligent transportation system (ITS) proponents and engineers, tend to be overly fixated on benefit-cost data. We want decisions to be made on logical grounds for which benefit-cost calculations are optimal. While benefit-cost data is necessary, it is not always sufficient. We can learn from our history where we see three broad groups of ITS deploymen