Skip to main content

Smart signal software ‘has potential for ICM’

Software developed by researchers from the University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway. A new version of the software has been deployed at more than fifty intersections managed by the Minnesota Department of Transportatio
September 26, 2013 Read time: 2 mins
Software developed by researchers from the 584 University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway.

A new version of the software has been deployed at more than fifty intersections managed by the 2103 Minnesota Department of Transportation (MnDOT), enabling Smart signal to retrieve traffic data direct from signal controllers without any additional hardware instrumentation, reducing both the time and cost associated with implementation.

Researchers are now turning their attention to investigations into how Smart signal could be used as part of an integrated corridor management (ICM) system.

The proposed ICM system would use the performance measures generated by the system to diagnose incidents on signalised arterials and propose new signal control strategies that could be deployed in real time to mitigate traffic congestion.

The system also aims to reduce overall network congestion by using the available capacity of parallel routes, for example, by rerouting traffic from a freeway to a parallel signalised arterial during times of peak traffic congestion or when a crash occurs. In this case, Smart signal could help identify and predict the effects of rerouting travellers to the arterial and then automatically adjust signal timing to compensate for the increased traffic.

The study tested the proposed ICM system using a traffic simulation and results have shown that the system significantly reduces network congestion; the average delay and number of stops per vehicle was reduced and average vehicle speed increased.

For more information on companies in this article

Related Content

  • For software, sensors, and services, you can rely on Iteris
    August 26, 2022
    Santa Ana, CA-based Iteris will provide in-booth demonstrations illustrating how its comprehensive suite of software, sensors and consulting solutions meets agency staff and budgets where they are to scale revolutionary technologies for improved mobility, safety, equity and emissions in communities across the country. 
  • Carrots are proving cost-effective in Netherlands
    October 3, 2018
    There are lessons to be learned from congestion avoidance schemes in the Netherlands. David Crawford welcomes some new thinking in road pricing. Highway operators worldwide are being urged to learn from Dutch experience in using financial carrots rather than sticks to encourage drivers to avoid contributing to congestion. A Netherlands/UK group makes a convincing cost/benefit case in a new global survey of road pricing technologies, economics and acceptability. Representing the Rijkswaterstaat section of
  • HDR predicts an adaptable and flexible future for roadways
    December 19, 2016
    HDR consultants, Brian Swindell and Bernie Arseanea, consider managed lanes’ untapped potential. It is no surprise that corridor planning continues to challenge agencies and owners as demand continues to surpass roadway capacity.
  • Q-Free synchronises signals at nine intersections near Pittsburgh
    July 16, 2024
    Traffic management deal with Pennsylvania DoT uses Maxtime adaptive software