Skip to main content

Smart signal software ‘has potential for ICM’

Software developed by researchers from the University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway. A new version of the software has been deployed at more than fifty intersections managed by the Minnesota Department of Transportatio
September 26, 2013 Read time: 2 mins
Software developed by researchers from the 584 University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway.

A new version of the software has been deployed at more than fifty intersections managed by the 2103 Minnesota Department of Transportation (MnDOT), enabling Smart signal to retrieve traffic data direct from signal controllers without any additional hardware instrumentation, reducing both the time and cost associated with implementation.

Researchers are now turning their attention to investigations into how Smart signal could be used as part of an integrated corridor management (ICM) system.

The proposed ICM system would use the performance measures generated by the system to diagnose incidents on signalised arterials and propose new signal control strategies that could be deployed in real time to mitigate traffic congestion.

The system also aims to reduce overall network congestion by using the available capacity of parallel routes, for example, by rerouting traffic from a freeway to a parallel signalised arterial during times of peak traffic congestion or when a crash occurs. In this case, Smart signal could help identify and predict the effects of rerouting travellers to the arterial and then automatically adjust signal timing to compensate for the increased traffic.

The study tested the proposed ICM system using a traffic simulation and results have shown that the system significantly reduces network congestion; the average delay and number of stops per vehicle was reduced and average vehicle speed increased.

For more information on companies in this article

Related Content

  • New technology revolution in urban traffic control?
    January 26, 2012
    Urban traffic control is a well-defined and practised art. Nevertheless, there are technologies here and on the horizon with the potential to revolutionise how we do things. By Gavin Jackman and Andrew Kirkham, TRL, and Jason Barnes. Distributed monitoring and control of urban traffic networks and flows is nothing new. PC-based Urban Traffic Control (UTC) is now well established and operating in many locations around the world. However, it is worth considering the effects of the huge growth in the use of sm
  • C/AVs could mean cheaper roads
    October 28, 2019
    The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur
  • Less travel aggravation to blunt Aggieland fans’ motivation
    June 17, 2016
    Returning travel times to normal within two hours of the end of a major football game was the challenge facing College Station, Adam Lyons explains how this was achieved. College Station, TX, also known as ‘Aggieland’, is located right in the middle of the Dallas/Fort Worth, San Antonio and Houston triangle making the city accessible to over 14 million Texans within less than a four-hour drive. One of the biggest draws to this area is Texas A&M University (TAMU) and the Aggie football games in the fall, mea
  • Integrate systems to reduce roadside infrastructure
    January 27, 2012
    David Crawford reviews promising current developments. Instrumentation of the road infrastructure has grown to become one of the most dynamic sectors of the ITS industry. Drivers for its deployment include global concerns over the commercial and environmental pressures of traffic congestion, the importance of keeping drivers informed throughout their journeys, and the need to reduce accident rates and promote the safety of all road users, for example by enforcing traffic safety rules.