Skip to main content

Smart signal software ‘has potential for ICM’

Software developed by researchers from the University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway. A new version of the software has been deployed at more than fifty intersections managed by the Minnesota Department of Transportatio
September 26, 2013 Read time: 2 mins
Software developed by researchers from the 584 University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway.

A new version of the software has been deployed at more than fifty intersections managed by the 2103 Minnesota Department of Transportation (MnDOT), enabling Smart signal to retrieve traffic data direct from signal controllers without any additional hardware instrumentation, reducing both the time and cost associated with implementation.

Researchers are now turning their attention to investigations into how Smart signal could be used as part of an integrated corridor management (ICM) system.

The proposed ICM system would use the performance measures generated by the system to diagnose incidents on signalised arterials and propose new signal control strategies that could be deployed in real time to mitigate traffic congestion.

The system also aims to reduce overall network congestion by using the available capacity of parallel routes, for example, by rerouting traffic from a freeway to a parallel signalised arterial during times of peak traffic congestion or when a crash occurs. In this case, Smart signal could help identify and predict the effects of rerouting travellers to the arterial and then automatically adjust signal timing to compensate for the increased traffic.

The study tested the proposed ICM system using a traffic simulation and results have shown that the system significantly reduces network congestion; the average delay and number of stops per vehicle was reduced and average vehicle speed increased.

For more information on companies in this article

Related Content

  • Performance indicators help differentiate between truck tolling systems
    August 20, 2014
    Traffic Quality Management Karl Ernst Ambrosch talks to ITS International about a new KPI-based methodology for assessing the efficacy of electronic toll collection schemes The debate over which is the ‘best’ solution for applications such as truck tolling is now years old.
  • Dynamic messaging has its drawbacks
    December 5, 2018
    Dynamic message signs are a proven means of getting information to drivers on the road – but they have their drawbacks. Robert Gordon looks at the possibilities of expanding DMS capability by bringing that information into the cars themselves Delivery of traffic information to motorists by dynamic message signs (DMS) has proven to be popular and is a principal tool for conveying information developed by the traffic management centre (TMC) to the public. There are, however, limitations in the use of ph
  • Huawei addresses congested, separated rail networks with cloud solution
    December 20, 2024
    A shift to a cloud-based operating regime solves the problems of trying to make cluttered, geographically-discrete terrestrial systems work together
  • European eCoMove consortium presents findings
    November 20, 2013
    After three years of research, the Cooperative Mobility Systems and Services for Energy Efficiency (eCoMove) consortium has presented its final results to the public. The consortium, comprising 32 partners including public authorities, vehicle manufacturers, service providers, infrastructure and telecommunication operators, and research institutes, has developed solutions using next-generation vehicle-to-X communication technologies to reduce the inefficiencies responsible for energy waste in road trans