Skip to main content

Siemens introduces new software for “talking” traffic intersections

The city of Abilene, Texas, in the US is using new adaptive traffic control software from Siemens to increase traffic flow along a heavily travelled corridor, where two state highways meet at two intersections about 750 feet apart with elevated railroads passing between them. SEPAC Peer-to-Peer software allows intersection controllers to share information with one another on traffic and pedestrian conditions, allowing the on-street network of controllers to adaptively respond to changing traffic conditions
July 19, 2017 Read time: 2 mins
The city of Abilene, Texas, in the US is using new adaptive traffic control software from 189 Siemens to increase traffic flow along a heavily travelled corridor, where two state highways meet at two intersections about 750 feet apart with elevated railroads passing between them.


SEPAC Peer-to-Peer software allows intersection controllers to share information with one another on traffic and pedestrian conditions, allowing the on-street network of controllers to adaptively respond to changing traffic conditions in real-time.

In the field, a controller can transmit information about a large number of vehicles to a controller at the next traffic signal. This allows extra green time for the group of cars to move through multiple intersections, making traffic more efficient for operators and the travelling public.

According to James Rogge, traffic engineer for Abilene, since the implementation of the technology, the City has seen significant improvements in traffic flow through the once congested area.

The Peer-to-Peer feature gives operators a greater level of insight into traffic conditions and more accuracy in adapting traffic patterns to increase flow and ultimately reduce congestion. The SEPAC software can be installed in existing traffic controllers and requires no additional equipment or IT infrastructure.

For more information on companies in this article

Related Content

  • Benefits of traffic light synchronisation
    January 27, 2012
    Alicia Parkway corridor, located in Orange County, California, was part of Phase 1 of an inter-jurisdictional Traffic Light Synchronisation Programme (TLSP) in Orange County designed to increase mobility and overall drive quality while reducing fuel consumption and greenhouse gas emissions. By increasing average speeds and reducing travel times via the reduction in stops, the programme sought to reduce vehicle acceleration and deceleration events along the corridor; these have been identified as the leadin
  • Challenges and benefits of adaptive signal control
    April 23, 2013
    Delcan’s Joe Lam, who managed the first computerised signal system in the world, provides an expert insight into adaptive signal control. There are no gadgets in the world that regulate our daily behaviour as much as traffic signals, except perhaps our mobile phones. It has been estimated that the daily commuter goes through at least 10 signals on his journey to work. However, unlike mobile phones, traffic signals cannot be ignored or switched off by their daily users, at least not without legal consequence
  • Hikvision passes history exam
    October 13, 2020
    Hikvision technology is being used in the ancient walled city of Xi’an, historical seat of the Tang Dynasty, to boost traffic flow – and it seems to be helping in China’s new high-tech hub
  • Inrix expands traffic data programme collaboration
    October 12, 2012
    Nearly a year after the I-95 Corridor Coalition, the University of Maryland (UMD) and Inrix announced a three-year expansion of the Vehicle Probe Project (VPP), the coalition and its partners are expanding their collaboration once again. Through a Federal Highway Administration (FHWA) Awards Grant, the coalition will use Inrix traffic information to expand coverage to over 40,000 miles of roads across fourteen states.