Skip to main content

Siemens introduces new software for “talking” traffic intersections

The city of Abilene, Texas, in the US is using new adaptive traffic control software from Siemens to increase traffic flow along a heavily travelled corridor, where two state highways meet at two intersections about 750 feet apart with elevated railroads passing between them. SEPAC Peer-to-Peer software allows intersection controllers to share information with one another on traffic and pedestrian conditions, allowing the on-street network of controllers to adaptively respond to changing traffic conditions
July 19, 2017 Read time: 2 mins
The city of Abilene, Texas, in the US is using new adaptive traffic control software from 189 Siemens to increase traffic flow along a heavily travelled corridor, where two state highways meet at two intersections about 750 feet apart with elevated railroads passing between them.


SEPAC Peer-to-Peer software allows intersection controllers to share information with one another on traffic and pedestrian conditions, allowing the on-street network of controllers to adaptively respond to changing traffic conditions in real-time.

In the field, a controller can transmit information about a large number of vehicles to a controller at the next traffic signal. This allows extra green time for the group of cars to move through multiple intersections, making traffic more efficient for operators and the travelling public.

According to James Rogge, traffic engineer for Abilene, since the implementation of the technology, the City has seen significant improvements in traffic flow through the once congested area.

The Peer-to-Peer feature gives operators a greater level of insight into traffic conditions and more accuracy in adapting traffic patterns to increase flow and ultimately reduce congestion. The SEPAC software can be installed in existing traffic controllers and requires no additional equipment or IT infrastructure.

For more information on companies in this article

Related Content

  • Healthy prospects for floating vehicle data systems
    February 3, 2012
    Elmar Brockfeld, Alexander Sohr and Peter Wagner from the German Aerospace Center's Institute of Transport Systems look at the prospects for floating vehicle data systems. Although Floating Vehicle Data (FVD) or probe vehicle fleets have been around for about a decade, the idea behind them is of course much older: from probe vehicles that flow with the traffic it should be possible to get a precise, fast and spatially near-complete picture of the prevailing traffic flow conditions in an area under surveilla
  • Machine vision’s transport offerings move on apace
    June 30, 2016
    Colin Sowman considers some of the latest advances in camera technology and transport-related vision technology applications. Vision technology in the transportation sector is moving apace as technical developments on both the hardware and software sides combine to make cameras more multifunctional with a single digital camera now able to cover a multitude of tasks.
  • Making the case for ALPR in enforcement
    February 2, 2012
    Federal Signal's Brian Shockley uses examples from around the world to make the case for the greater use of automatic license plate recognition technology in the US. It is time, he says, to consider the possibilities of a national network and the use of average speed enforcement
  • Peek introduces GreenWave for 2070 controllers
    June 14, 2016
    Peek is introducing GreenWave for 2070 controllers. The new Linux-based firmware designed for NTCIP traffic signal controllers, is on display at the company's booth at ITS America 2016. GreenWave empowers users to create central systems, closed-loop systems, or simple bit relays to communicate I/O from one intersection to the next. The new firmware (formerly known as NWS Voyage) is compatible with Peek's Spinnaker advanced traffic management system (ATMS), and a variety of other NTCIP compliant centra