Skip to main content

Sick unveils Free Flow Profiler for scanning vehicles

Sick has launched a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic. The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds. During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measure vehicle l
May 20, 2019 Read time: 2 mins

536 Sick has launched a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic.

The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds.

During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measure vehicle length, width and height. The system can be enlarged to include multiple lanes or adapted with varying sensor layouts to obtain the required information for monitoring purposes.

According to Sick, the system has a range up to 40m and can profile all vehicle types from heavy road transport to passenger cars, towed vehicles and motorbikes.

Vehicle measurements are processed in the Sick Traffic Controller to produce a 3D model of each vehicle. The system captures vehicle dimensions, vehicle type, driving direction and lane assignment. Options to integrate vehicle classification, axle counting or detection of overheated vehicle parts can be added to meet specific local operator conditions and requirements.

Neil Sandhu, Sick’s UK product manager for imaging, measurement, ranging, says the solution is versatile “whenever accurate 3D vehicle profile is an advantage”.

“For example, warnings of over-height or over-sized vehicles approaching bridges or tunnels, or loading ferries so that the distribution of vehicles and weights is optimised,” he continues. “Up to 30 different automated vehicle classifications enable precise charging of toll fees.”

The system is expected to profile vehicle speeds up to 120km/hr and can be installed in new facilities, retrofitted and re-located. It can also be integrated with other traffic management monitoring systems such as optical character recognition, CCTV and security.

For more information on companies in this article

Related Content

  • Entering the ANPR sector with Plate-i Dome
    April 11, 2024
    Carrida's product is an 'entry-price' camera with a large detection range of 16m
  • SNCF uses ITS to make crossings safer
    May 19, 2021
    There are too many deaths where road and rail intersect: Virginie Taillandier, smart level crossing project manager at French rail group SNCF, outlines how ITS communications can help
  • Upgrading Turkey's tolling system
    April 25, 2013
    A programme modernising road tolling equipment on Turkey’s national highway network has resulted in what is arguably Europe’s most advanced toll system, reports Jon Masters. Turkey has introduced a new system of technology for charging for use of its 2000km national highway network, heralded as the first full-scale use of passive RFID tags for electronic open road tolling in Europe. The new ‘Fast Passing System’ (HGS) is an upgrade of Turkey’s existing Automatic Passing System (OGS) technology, which uses
  • Here’s HD AV map prepared for 5G
    June 17, 2019
    The emergence of 5G may not be necessary to provide a high-definition map for autonomous driving, says Matt Preyss from Here Technologies. Ben Spencer asks why 5G is a hot topic worldwide, with the potential for faster transfer of information eagerly awaited by those convinced that it will be a game-changer for the ITS industry. High-definition (HD) maps are essential to allow autonomous vehicles (AVs) to understand their environment, and operate safely within it in relation to other road users and p