Skip to main content

Sick unveils Free Flow Profiler for scanning vehicles

Sick has launched a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic. The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds. During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measure vehicle l
May 20, 2019 Read time: 2 mins

536 Sick has launched a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic.

The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds.

During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measure vehicle length, width and height. The system can be enlarged to include multiple lanes or adapted with varying sensor layouts to obtain the required information for monitoring purposes.

According to Sick, the system has a range up to 40m and can profile all vehicle types from heavy road transport to passenger cars, towed vehicles and motorbikes.

Vehicle measurements are processed in the Sick Traffic Controller to produce a 3D model of each vehicle. The system captures vehicle dimensions, vehicle type, driving direction and lane assignment. Options to integrate vehicle classification, axle counting or detection of overheated vehicle parts can be added to meet specific local operator conditions and requirements.

Neil Sandhu, Sick’s UK product manager for imaging, measurement, ranging, says the solution is versatile “whenever accurate 3D vehicle profile is an advantage”.

“For example, warnings of over-height or over-sized vehicles approaching bridges or tunnels, or loading ferries so that the distribution of vehicles and weights is optimised,” he continues. “Up to 30 different automated vehicle classifications enable precise charging of toll fees.”

The system is expected to profile vehicle speeds up to 120km/hr and can be installed in new facilities, retrofitted and re-located. It can also be integrated with other traffic management monitoring systems such as optical character recognition, CCTV and security.

For more information on companies in this article

Related Content

  • Advanced traffic management amid urbanisation
    July 30, 2020
    There is no room for error on the crowded roads in many cities: Andrew Watson of Huawei explains why AI is a perfect tool to help urban authorities and transportation agencies look after people in busy traffic
  • Sign language reduces human error says Clearview
    September 26, 2019
    Wrong-way warning systems and advanced queue detection can help to reduce human error. They can also cut road accidents – and therefore road deaths, says Clearview Intelligence Where were nearly 1,800 deaths on the UK’s roads in 2018 – an average of five people dying each day. The largest single cause of serious injury is crashes at junctions (accounting for 33% of incidents), while the largest single cause of death was run-off road crashes (30%) “With vehicles increasingly being designed with saf
  • E-tolling is the new normal
    April 29, 2020
    Electronic tolling has become a cornerstone for the next wave of innovation, says IBTTA’s Bill Cramer. So is this the end of the road for toll plazas?
  • Auckland reduces airport journey times
    April 16, 2018
    Getting from the centre of Auckland to the city’s airport used to be fraught with unwanted stress for passengers – but a new system combining radar, Bluetooth and Wi-Fi is smoothing things over. Andrew Stone investigates. Struggling to cope with steady growth in passenger numbers and the costly traffic congestion which that can entail, New Zealand’s Auckland International Airport has deployed an innovative system that is smoothing traffic and passenger flows. The same system is also offering new, data-led