Skip to main content

Sick unveils Free Flow Profiler for scanning vehicles

Sick has launched a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic. The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds. During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measure vehicle l
May 20, 2019 Read time: 2 mins

536 Sick has launched a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic.

The Free Flow Profiler is an all-weather system suitable for vehicle tolling and classification uses, especially in operations such as optimal weight loading of ferries or trains and for verifying vehicle dimensions to maximise revenue recovery, the company adds.

During multi-lane, free road movement, Sick’s 2D Lidar sensors scan traffic and measure vehicle length, width and height. The system can be enlarged to include multiple lanes or adapted with varying sensor layouts to obtain the required information for monitoring purposes.

According to Sick, the system has a range up to 40m and can profile all vehicle types from heavy road transport to passenger cars, towed vehicles and motorbikes.

Vehicle measurements are processed in the Sick Traffic Controller to produce a 3D model of each vehicle. The system captures vehicle dimensions, vehicle type, driving direction and lane assignment. Options to integrate vehicle classification, axle counting or detection of overheated vehicle parts can be added to meet specific local operator conditions and requirements.

Neil Sandhu, Sick’s UK product manager for imaging, measurement, ranging, says the solution is versatile “whenever accurate 3D vehicle profile is an advantage”.

“For example, warnings of over-height or over-sized vehicles approaching bridges or tunnels, or loading ferries so that the distribution of vehicles and weights is optimised,” he continues. “Up to 30 different automated vehicle classifications enable precise charging of toll fees.”

The system is expected to profile vehicle speeds up to 120km/hr and can be installed in new facilities, retrofitted and re-located. It can also be integrated with other traffic management monitoring systems such as optical character recognition, CCTV and security.

UTC

Related Content

  • August 30, 2019
    Sick introduces Free Flow Profiler
    Sick has released a vehicle measurement system which it says enables accurate 3D profiling of vehicles across multiple lanes in free-flow traffic.
  • January 29, 2018
    SICK launches all-weather 3D sensor system for traffic management
    Sick has launched the TIC502 Lidar sensor traffic and warning system which is said to scan vehicles up to 100 times a second with 99% accuracy to generate a 3D profile of each vehicle. The all-weather solution can be used for counting fast lane, free-flowing and static traffic to facilitate real-time management and electronic toll charge assessment of all vehicle types according to standard international transport classifications. TIC502 has a range of up to 40 metres and minimum mounting height of 1.5
  • April 16, 2013
    Sick takes the high road for complex traffic management
    Sick is taking advantage of Traffex to launch its TIC102 laser measurement system at Traffex 2013, part of the company’s growing portfolio of vehicle and traffic management solutions in the UK, Following the acquisition of the Swiss-based company ECTN. The TIC102 offers real time vehicle profiling and classification for multi-lane, free flowing or stop-go traffic. As well as providing collection data for tolls, it can be used for monitoring vehicle speed, vehicle dimensions and vehicle intervals, even with
  • January 5, 2016
    Machine vision takes ITS further than the eye can see
    Vitronic’s John Yalda looks at how machine vision has become an integral part of many ITS deployments and why it complements, rather than replaces, ANPR. New and conventional business concepts like online shopping and mail order business are becoming more established in the cultures of fast-growing economies and increasing the demand for flexibility in the freight transportation and logistics industry. Road transport has become the preferred infrastructure for freight forwarding and several studies predict