Skip to main content

SICK launches all-weather 3D sensor system for traffic management

Sick has launched the TIC502 Lidar sensor traffic and warning system which is said to scan vehicles up to 100 times a second with 99% accuracy to generate a 3D profile of each vehicle. The all-weather solution can be used for counting fast lane, free-flowing and static traffic to facilitate real-time management and electronic toll charge assessment of all vehicle types according to standard international transport classifications. TIC502 has a range of up to 40 metres and minimum mounting height of 1.5
January 29, 2018 Read time: 2 mins

536 Sick has launched the TIC502 Lidar sensor traffic and warning system which is said to scan vehicles up to 100 times a second with 99% accuracy to generate a 3D profile of each vehicle. The all-weather solution can be used for counting fast lane, free-flowing and static traffic to facilitate real-time management and electronic toll charge assessment of all vehicle types according to standard international transport classifications.

TIC502 has a range of up to 40 metres and minimum mounting height of 1.5 metres above the tallest vehicle. It aims to provide a vehicle class assignment better than 98% and speed assessment accuracy is +/- 3kph up to 100kph, and +/- 3% above 100kph.

Vehicle class is measured according to TLS8+1, TLS5+1, TLS2+1 or Swiss10, into up to 30 different classes. The 3D view of traffic is integrated into a display and autocalibrated with moving traffic.

Additionally, the solution comes with a high all-weather capability between -40oC and +60oC and can also be combined with an additional 2D Lidar sensors to count axles for traffic profiling and assessment.

The traffic controller automatically stores a data history of the last 50 vehicles detected which is sent to storage in the user’s system via FTP or UNC transmission.

Neil Sandhu, SICK’s National product manager for imaging, measurement, ranging and systems, said: “The TIC502 generates 3D profiles and combines comprehensive and highly reliable data and warnings with excellent availability in all weather and all seasons. The unit can also be easily retrofitted on structures such as overhead gantries, bridges or tunnel entrances to upgrade existing traffic monitoring and control.

“The facility for adding an extra Lidar sensors to the TIC502 allows accurate axle counting, which is often used for improved toll assessment of very heavy transport vehicles, without needing the use of a full vision system.”

UTC

Related Content

  • March 16, 2012
    Long range radar aids wide area traffic monitoring
    Applications of long range radar technology are demonstrating its effectiveness as a first line of defence for highway managers – adding greater resilience and capability to existing systems. Development efforts are bringing long range millimetric wave radar to the fore as a very useful tool for managers of highway networks. Application of radar for wide area monitoring in traffic management remains in its infancy. But recent projects are demonstrating how it can now serve to enhance detection of incidents
  • January 23, 2012
    Tunnel simulators vital for real world tunnel management
    Guillaume Ponsar, tunnel safety engineer with Egis Road Operation, writes about the advantages to be gained from the use of tunnel simulators. Major tunnel disasters over the last decade and more have shown how swiftly and badly a simple crash or fire may evolve should the wrong actions be taken by control room operators or traffic managers. Global safety issues and the reactions of operations staff have now become the principal concerns for Operations and Maintenance (O&M) service providers. As a result, n
  • October 10, 2012
    Urban tunnel replaces viaduct, improves safety
    Earthquake sensors, automatic barriers and real time monitoring systems are all part of a scheme to make a major Seattle traffic artery safer, by taking it underground. Huw Williams reports. Seattle’s metropolitan area of 3.5 million people, like much of the western seaboard of the United States, lies in an earthquake zone. In Seattle’s case, the city and its hinterland sit atop a complex network of interrelated active geological faults capable of severe seismic activity and posing complex considerations fo
  • August 19, 2015
    Vehicular networking architecture for local road weather services
    The Finnish Meteorological Institute is currently testing two-way delivery of local weather data as Timo Sukuvaara explains. Road weather information is one of the key ways in which ITS can help reduce traffic accidents and fatalities – which is why the Finnish Meteorological Institute (FMI) has long provided road weather services. Now, the CoMoSeF (Cooperative Mobility Services of the Future) project has been developing communication methodologies to deliver road weather services directly to vehicles and g