Skip to main content

Seattle DOT chooses Peek ATC1000

Seattle Department of Transportation has chosen the Peel Traffic ATC-1000 controller for a King County Metro Rapid Ride corridor project. Rapid Ride is Seattle’s bus system; buses send signals to traffic lights so green lights stay green longer, or red lights switch to green faster. The systems have many advanced features including transit signal priority to help synchronise traffic lights with an approaching Rapid Ride bus, enabling the traffic signal controller to provide an effective transit priority re
September 21, 2012 Read time: 2 mins
Seattle Department of Transportation has chosen the Peek Traffic Corporation ATC-1000 controller for a King County Metro Rapid Ride corridor project.  

Rapid Ride is Seattle’s bus system; buses send signals to traffic lights so green lights stay green longer, or red lights switch to green faster. The systems have many advanced features including transit signal priority to help synchronise traffic lights with an approaching Rapid Ride bus, enabling the traffic signal controller to provide an effective transit priority response to buses that are behind schedule.    

“Traffic operations engineers from the City of Seattle and King County Metro closely studied the comprehensive transit priority module in the Peek ATC-1000 controller and determined that it was an appropriate choice for the project,” said Jon Meusch of Northwest Signal.

The ATC-1000 has built-in transit priority capabilities and utilises Peek’s GreenWave advanced controller software. According to Peek Traffic, it is the only controller software on the market that can run multiple traffic engines on the same platform, and switch between them without sending an intersection into flash mode. It has also demonstrated advanced capabilities in standards compliance and advanced data logging.

Related Content

  • Real time active traffic management improves travel times
    July 17, 2012
    Traffic management centres (TMC) have traditionally served to provide surveillance and responses to traffic incidents and recurring and non-recurring changes in road networks. Typically, a TMC collected field data from the roadway and transit infrastructure and provided the integration necessary for operators to see what was happening and then coordinate a response. Standard operating procedures (SOPs) guided operators on how to respond to a given situation. It eventually became impractical for TMC operat
  • In-vehicle intersection violation Warning system
    January 31, 2012
    Mike Schagrin, ITS Joint Program Office, RITA, and John Harding, NHTSA, describe US progress towards an in-vehicle Intersection Violation Warning system. In 2008, there were 37,261 fatalities on US roadways. Of these, 7,772, some 20.8 per cent of the total, were defined as intersection crashes or intersection-related crashes. Through a multi-agency research initiative led by the Research and Innovative Technology Administration (RITA), the US Department of Transportation (USDOT) has developed a prototype In
  • Bespoke ITS is helping to reduced collisions on America’s rural roads
    October 22, 2014
    David Crawford cherrypicks conference and award highlights Almost 30% of all US citizens live in rural areas or very small communities, and 34 of the 50 states exceed this level in their own populations, with the proportions rising as high as 85%. And although rural routes carry only 35% of all traffic, the accidents that occur on them account for some 54% of all US road traffic accident deaths.
  • Control rooms adapt to tech changes
    July 8, 2019
    From IP-based systems to an increasing array of choice, traffic and transit management has changed a lot in the last few years. Adam Hill talks to some of the leading players in the control room business