Skip to main content

Researchers helping to reduce New Zealand’s congestion

Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns. University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible. Along with Dr Glen Koorey and
April 7, 2015 Read time: 3 mins
Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns.

University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible.

Along with Dr Glen Koorey and postgraduate students, Professor Nicholson has been studying Auckland’s motorways, with the support of a US$128,000 grant from the 6296 New Zealand Transport Agency.

Professor Nicholson says the aim of the project is to improve the reliability of New Zealand’s busy motorways and roads by finding ways to reduce traffic problems caused by unplanned accidents. New technology such as intelligent transport systems (ITS) and better incident management plans are helping.

The study area included a portion of Auckland’s northern motorway which is part of State Highway 1 and a key part of Auckland’s traffic network. The research shows that it is possible to use the latest digital technology to adapt traffic pattern changes following an accident.

Nicholson says that traditionally, management of New Zealand’s major city arterial routes and motorways is fairly ad hoc, relying on manual intervention and educated guesswork to try to redirect or re-prioritise traffic if something unexpected occurs.

The research uses computer simulation models, together with collected field data, to reproduce the effects that a range of incidents will have on the network. The model simulates both the road network and the traffic signal system, which automatically adjusts traffic signal timings at our intersections, based on traffic demand.

“We took a section of Auckland's northern motorway, replicated it in a model, and then applied some actual and hypothetical incidents to it, says Nicholson. “Then we tried some different treatment strategies to see whether they improved the situation better than the automatic default traffic signal system adjustments.

“People are often more concerned about the variability of their trip times rather than the absolute duration. They can plan for a longer journey time if they know about it. It is the uncertainty that causes problems.

“However, these solutions may only work in some situations. In peak hour congestion, no amount of tweaking will improve an unexpected incident situation but there is the potential in the shoulder periods of peak time to make considerable gains.”

For more information on companies in this article

Related Content

  • Adaptive cruise control can mitigate phantom traffic jams, says Ford
    July 10, 2018
    Phantom traffic jams can be minimised through adaptive cruise control (ACC) technology, says Ford. These traffic jams occur when one driver hits the brakes and causes a chain reaction of other drivers tapping their brakes which causes traffic flow to halt. Ford conducted a test alongside Vanderbilt University researchers on a closed test track involving 36 vehicles across three lanes. https://www.youtube.com/watch?v=2GYfXxVn2Oc The motor company says the main causes of phantom jams are human fa
  • Vaisala enriches road condition data use 
    May 20, 2021
    Solution with Yotta means engineers can collect geospatial video data from network
  • TomTom traffic index shows increase in UK congestion
    April 1, 2015
    TomTom’s today 5th annual Traffic Index, the barometer of traffic congestion in over 200 cities worldwide, reveals rising congestion levels around the globe In addition, for the first time, the Index took an in-depth look at the true impact of rush hour traffic on the work week, uncovering that evening rush hour nearly doubles the journey time for car commuters. The analysis of 12 trillion pieces of traffic data worldwide revealed that the evening rush hour is the most congested time of day. Traffic co
  • Transformation of UK transport ‘has hardly begun’
    November 13, 2015
    As the Highways UK event approaches on 25-26 November, Jennie Martin, secretary general of ITS United Kingdom, believes the technological transformation of transport in the UK has hardly begun. She says, “The changes that are coming are going to affect everyone. We are going to be answering questions most people haven’t even thought to ask. In ITS, the UK is ahead of the game, but the game is changing. It’s an incredibly exciting time.’”