Skip to main content

Researchers helping to reduce New Zealand’s congestion

Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns. University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible. Along with Dr Glen Koorey and
April 7, 2015 Read time: 3 mins
Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns.

University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible.

Along with Dr Glen Koorey and postgraduate students, Professor Nicholson has been studying Auckland’s motorways, with the support of a US$128,000 grant from the 6296 New Zealand Transport Agency.

Professor Nicholson says the aim of the project is to improve the reliability of New Zealand’s busy motorways and roads by finding ways to reduce traffic problems caused by unplanned accidents. New technology such as intelligent transport systems (ITS) and better incident management plans are helping.

The study area included a portion of Auckland’s northern motorway which is part of State Highway 1 and a key part of Auckland’s traffic network. The research shows that it is possible to use the latest digital technology to adapt traffic pattern changes following an accident.

Nicholson says that traditionally, management of New Zealand’s major city arterial routes and motorways is fairly ad hoc, relying on manual intervention and educated guesswork to try to redirect or re-prioritise traffic if something unexpected occurs.

The research uses computer simulation models, together with collected field data, to reproduce the effects that a range of incidents will have on the network. The model simulates both the road network and the traffic signal system, which automatically adjusts traffic signal timings at our intersections, based on traffic demand.

“We took a section of Auckland's northern motorway, replicated it in a model, and then applied some actual and hypothetical incidents to it, says Nicholson. “Then we tried some different treatment strategies to see whether they improved the situation better than the automatic default traffic signal system adjustments.

“People are often more concerned about the variability of their trip times rather than the absolute duration. They can plan for a longer journey time if they know about it. It is the uncertainty that causes problems.

“However, these solutions may only work in some situations. In peak hour congestion, no amount of tweaking will improve an unexpected incident situation but there is the potential in the shoulder periods of peak time to make considerable gains.”

For more information on companies in this article

Related Content

  • Reducing incident clear up times, saving money
    January 24, 2012
    In 2007 in Atlanta, Georgia, it took over four hours to open the road after a major commercial vehicle incident. Not any more. Four years ago the Texas Transportation Institute (TTI) cited Atlanta, Georgia as the third-most congested city in the United States. Each traveller in metro Atlanta lost an incredible 57 hours a year to traffic delays, wasting 40 gallons of fuel while sitting in traffic. In 2007, it took nearly four and a half hours to open travel lanes after an average tractor-trailer incident. Th
  • Dynamic lane closures cuts time, cost and congestion on Motorway roadworks
    March 17, 2014
    A combination of technologies is leading to major congestion and cost reductions during roadworks on the UK’s motorway network. Innovative construction programme scheduling technology and the deployment of moveable barriers has achieved substantial savings of money and time on UK motorway roadworks managed by the Highways Agency (HA). This combination has set the scene for a new generation of road usage analysis tools. The HA’s objective was to reduce the congestion caused by lane closures during roa
  • Will driverless cars increase reliance on roads?
    February 29, 2016
    Researchers warn that driverless vehicles could intensify car use, reducing or even eliminating promised energy savings and environmental benefits. Development of autonomous driving systems has accelerated rapidly since the unveiling of Google’s driverless car in 2012, and energy efficiency due to improved traffic flow has been touted as one of the technology’s key advantages. However, new research by scientists from the University of Leeds, University of Washington and Oak Ridge National Laboratory,
  • The great pay divide
    April 2, 2014
    Public acceptance is crucial for the acceptance of managed and express lanes as Jon Masters discovers. Lists of proposed highway expansion projects introducing variably priced toll lanes continue to lengthen. Managed lanes, or express lanes to some, are gaining support as a politically favourable way of adding capacity and reducing acute congestion on principal highways. In Florida, for example, the managed lanes on the 95 Express are claimed to have significantly increased average peak-time speeds on tolle