Skip to main content

Researchers helping to reduce New Zealand’s congestion

Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns. University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible. Along with Dr Glen Koorey and
April 7, 2015 Read time: 3 mins
Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns.

University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible.

Along with Dr Glen Koorey and postgraduate students, Professor Nicholson has been studying Auckland’s motorways, with the support of a US$128,000 grant from the 6296 New Zealand Transport Agency.

Professor Nicholson says the aim of the project is to improve the reliability of New Zealand’s busy motorways and roads by finding ways to reduce traffic problems caused by unplanned accidents. New technology such as intelligent transport systems (ITS) and better incident management plans are helping.

The study area included a portion of Auckland’s northern motorway which is part of State Highway 1 and a key part of Auckland’s traffic network. The research shows that it is possible to use the latest digital technology to adapt traffic pattern changes following an accident.

Nicholson says that traditionally, management of New Zealand’s major city arterial routes and motorways is fairly ad hoc, relying on manual intervention and educated guesswork to try to redirect or re-prioritise traffic if something unexpected occurs.

The research uses computer simulation models, together with collected field data, to reproduce the effects that a range of incidents will have on the network. The model simulates both the road network and the traffic signal system, which automatically adjusts traffic signal timings at our intersections, based on traffic demand.

“We took a section of Auckland's northern motorway, replicated it in a model, and then applied some actual and hypothetical incidents to it, says Nicholson. “Then we tried some different treatment strategies to see whether they improved the situation better than the automatic default traffic signal system adjustments.

“People are often more concerned about the variability of their trip times rather than the absolute duration. They can plan for a longer journey time if they know about it. It is the uncertainty that causes problems.

“However, these solutions may only work in some situations. In peak hour congestion, no amount of tweaking will improve an unexpected incident situation but there is the potential in the shoulder periods of peak time to make considerable gains.”

For more information on companies in this article

Related Content

  • Adaptive traffic control drives financial benefits
    July 24, 2012
    Prof. Klaus Banse, President of ITS Colombia and Ing. Robert Miranda, Head of the Traffic Management and Control System of Cartagena de Indias, Columbia, outline early cost benefits of an adaptive traffic control system. At the beginning of this year, Cartagena de Indias, located on the north coast of Colombia in the Caribbean, implemented a new adaptive traffic control system on 52 intersections with an investment of US$4.5 million.
  • Is road user charging the first stop for congestion management?
    July 23, 2012
    David Hytch, Information Systems Director at the Greater Manchester Public Transport Executive, considers just where congestion pricing schemes should sit in transport planners' hierarchy of options for managing demand. On the face of it, Greater Manchester in England's proposed congestion charging scheme hit just about every sweet spot possible when it came to convincing the general public of the need for and benefits of such a venture. There was the promise from national government of almost £3bn-worth of
  • Vivacity demos AI junction control
    March 18, 2021
    How will AI-controlled junctions help smooth the journeys of drivers – and cyclists - in urban areas? Alan Dron looks at an expanding scheme in Manchester, UK, which aims to find out
  • Auckland considers road user charging to plug funding shortfall
    October 29, 2014
    Auckland, New Zealand, faces a US$9.5 billion transport funding gap to build the fully-integrated transport network set out in the 30-year Auckland Plan that includes new roads, rail, ferries, busways, cycle-ways and supporting infrastructure needed to cope with a population set to hit 2.5 million in the next three decades. If Auckland opts to pay for the fully-integrated Auckland Plan, Auckland Council officials claim the transport network congestion is expected to improve by 20 per cent over the next 1