Skip to main content

Researchers helping to reduce New Zealand’s congestion

Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns. University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible. Along with Dr Glen Koorey and
April 7, 2015 Read time: 3 mins
Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns.

University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible.

Along with Dr Glen Koorey and postgraduate students, Professor Nicholson has been studying Auckland’s motorways, with the support of a US$128,000 grant from the 6296 New Zealand Transport Agency.

Professor Nicholson says the aim of the project is to improve the reliability of New Zealand’s busy motorways and roads by finding ways to reduce traffic problems caused by unplanned accidents. New technology such as intelligent transport systems (ITS) and better incident management plans are helping.

The study area included a portion of Auckland’s northern motorway which is part of State Highway 1 and a key part of Auckland’s traffic network. The research shows that it is possible to use the latest digital technology to adapt traffic pattern changes following an accident.

Nicholson says that traditionally, management of New Zealand’s major city arterial routes and motorways is fairly ad hoc, relying on manual intervention and educated guesswork to try to redirect or re-prioritise traffic if something unexpected occurs.

The research uses computer simulation models, together with collected field data, to reproduce the effects that a range of incidents will have on the network. The model simulates both the road network and the traffic signal system, which automatically adjusts traffic signal timings at our intersections, based on traffic demand.

“We took a section of Auckland's northern motorway, replicated it in a model, and then applied some actual and hypothetical incidents to it, says Nicholson. “Then we tried some different treatment strategies to see whether they improved the situation better than the automatic default traffic signal system adjustments.

“People are often more concerned about the variability of their trip times rather than the absolute duration. They can plan for a longer journey time if they know about it. It is the uncertainty that causes problems.

“However, these solutions may only work in some situations. In peak hour congestion, no amount of tweaking will improve an unexpected incident situation but there is the potential in the shoulder periods of peak time to make considerable gains.”

For more information on companies in this article

Related Content

  • Adaptive traffic control with Sensys reduces congestion… and stress
    November 18, 2020
    Adapting to evolving traffic patterns can be difficult. Bad weather, accidents, events, construction work, and even business openings can alter traffic for hours, days, weeks, or longer.
  • Autonomous driving – what can we really expect?
    June 6, 2016
    Dave Marples of Technolution BV looks beyond the hype to the practical implementation of autonomous vehicles. Having looked at the development of this sector for some time, I am concerned about the current state of autonomous driving development as engineering (and marketing) have run way ahead of the wider systemic, and legislative, requirements to support an autonomous future.
  • Aimsun helps use community intelligence to improve mobility
    July 23, 2024
    A paradigm shift from traditional to data-driven community-aware transport solutions has guided development of cooperative transport management strategies in the FRONTIER research project
  • Technology targets Red-X transgressors
    February 25, 2016
    Currently deployed technology is being used to detect motorists ignoring the ‘red-X’ signs that indicate the lane is closed, as Colin Sowman hears. With an increasing network of ‘Smart Motorways’ - all-lane running or the opening of hard shoulders during times of congestion - Highways England (HE) has identified a growing problem with ‘red-X’ compliance. The ‘red-X’ sign signifies a closed lane or lanes and used to provide a safer area for stranded motorists, emergency workers or road maintenance crews and