Skip to main content

Researchers helping to reduce New Zealand’s congestion

Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns. University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible. Along with Dr Glen Koorey and
April 7, 2015 Read time: 3 mins
Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns.

University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible.

Along with Dr Glen Koorey and postgraduate students, Professor Nicholson has been studying Auckland’s motorways, with the support of a US$128,000 grant from the 6296 New Zealand Transport Agency.

Professor Nicholson says the aim of the project is to improve the reliability of New Zealand’s busy motorways and roads by finding ways to reduce traffic problems caused by unplanned accidents. New technology such as intelligent transport systems (ITS) and better incident management plans are helping.

The study area included a portion of Auckland’s northern motorway which is part of State Highway 1 and a key part of Auckland’s traffic network. The research shows that it is possible to use the latest digital technology to adapt traffic pattern changes following an accident.

Nicholson says that traditionally, management of New Zealand’s major city arterial routes and motorways is fairly ad hoc, relying on manual intervention and educated guesswork to try to redirect or re-prioritise traffic if something unexpected occurs.

The research uses computer simulation models, together with collected field data, to reproduce the effects that a range of incidents will have on the network. The model simulates both the road network and the traffic signal system, which automatically adjusts traffic signal timings at our intersections, based on traffic demand.

“We took a section of Auckland's northern motorway, replicated it in a model, and then applied some actual and hypothetical incidents to it, says Nicholson. “Then we tried some different treatment strategies to see whether they improved the situation better than the automatic default traffic signal system adjustments.

“People are often more concerned about the variability of their trip times rather than the absolute duration. They can plan for a longer journey time if they know about it. It is the uncertainty that causes problems.

“However, these solutions may only work in some situations. In peak hour congestion, no amount of tweaking will improve an unexpected incident situation but there is the potential in the shoulder periods of peak time to make considerable gains.”

For more information on companies in this article

Related Content

  • New Zealand launches Bluetooth ITS trial
    June 13, 2013
    A trial using wireless communications technology to deliver real-time traffic information has been launched by New Zealand’s Ministry of Transport and ITS consultants AraFlow. The Co-operative Intelligent Transport Systems trial will investigate whether providing accurate real-time information about traffic conditions to participating commercial transport operators improves the productivity of freight movements. Ministry of Transport Chief Executive Martin Matthews says “We are testing whether this informat
  • Do buses need subsidies in congestion charging areas
    June 20, 2016
    David Crawford takes a look at the debate surrounding bus subsidies. Subsidies for public transport are a well-known and frequently-used policy tool directed at reducing the high environmental and social costs of peak-period traffic congestion. But at the end of last year the Swedish Centre for Transport Studies published a working paper entitled ‘Should buses still be subsidised in Stockholm?’ This concluded that the subsidy levels currently being applied in Stockholm could be nearly halved by setting bus
  • Single system simplicity for smarter city transport
    February 23, 2017
    All encompassing, city-wide transport monitoring and control systems are beginning to make their way onto the market, as Colin Sowman hears. The futuristic vision of cities where everything is connected and operated with maximum efficiency by a gigantic computer remains a distant prospect but related sectors and services are beginning to coalesce: transport monitoring and control for instance.
  • AV technology ‘could reduce congestion’, says Australian minister
    February 26, 2019
    Congestion costs would drop by more than a quarter if automated vehicles (AVs) account for 30% of kilometres travelled, says Alan Tudge, Australia’s minister for cites urban infrastructure and population. Speaking at the Australia-New Zealand Cities Symposium in Sydney, Tudge revealed findings from the Bureau of Infrastructure, Transport and Regional Economics. “They estimate it would drop from $37 billion of avoidable congestion to $27 billion,” Tudge says. A 30km freeway journey in Melbourne has increas