Skip to main content

Researchers helping to reduce New Zealand’s congestion

Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns. University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible. Along with Dr Glen Koorey and
April 7, 2015 Read time: 3 mins
Researchers at the University of Canterbury, New Zealand claim the impact of congestion in the country’s major cities could soon be greatly reduced. They are exploring how the movement of vehicles on New Zealand’s city roads can be more efficiently managed after accidents and breakdowns.

University of Canterbury transport engineer Professor Alan Nicholson says their research shows drivers tend to divert off the motorway in large numbers only after a slow queue becomes visible.

Along with Dr Glen Koorey and postgraduate students, Professor Nicholson has been studying Auckland’s motorways, with the support of a US$128,000 grant from the 6296 New Zealand Transport Agency.

Professor Nicholson says the aim of the project is to improve the reliability of New Zealand’s busy motorways and roads by finding ways to reduce traffic problems caused by unplanned accidents. New technology such as intelligent transport systems (ITS) and better incident management plans are helping.

The study area included a portion of Auckland’s northern motorway which is part of State Highway 1 and a key part of Auckland’s traffic network. The research shows that it is possible to use the latest digital technology to adapt traffic pattern changes following an accident.

Nicholson says that traditionally, management of New Zealand’s major city arterial routes and motorways is fairly ad hoc, relying on manual intervention and educated guesswork to try to redirect or re-prioritise traffic if something unexpected occurs.

The research uses computer simulation models, together with collected field data, to reproduce the effects that a range of incidents will have on the network. The model simulates both the road network and the traffic signal system, which automatically adjusts traffic signal timings at our intersections, based on traffic demand.

“We took a section of Auckland's northern motorway, replicated it in a model, and then applied some actual and hypothetical incidents to it, says Nicholson. “Then we tried some different treatment strategies to see whether they improved the situation better than the automatic default traffic signal system adjustments.

“People are often more concerned about the variability of their trip times rather than the absolute duration. They can plan for a longer journey time if they know about it. It is the uncertainty that causes problems.

“However, these solutions may only work in some situations. In peak hour congestion, no amount of tweaking will improve an unexpected incident situation but there is the potential in the shoulder periods of peak time to make considerable gains.”

For more information on companies in this article

Related Content

  • In-vehicle warning systems ‘reduce risk of run-off-the-road crashes’
    August 27, 2015
    In-vehicle lane-departure warning systems can help reduce the risk of dangerous run-off-the-road crashes, according to a new study from researchers at the University of Minnesota’s HumanFIRST Laboratory. “Run-off-the-road crashes are a huge concern, especially in rural areas,” says project co-investigator Jennifer Cooper, a HumanFIRST Lab assistant scientist. “Crash statistics tell us they contribute to more than half of all vehicle fatalities nationwide and that these crashes occur most often on two-la
  • Developing integrated transport networks
    September 20, 2012
    A major initiative in managing numerous transport networks as a single system has moved into a significant phase with design of sophisticated new ITS systems. Jon Masters reports. Detailed design work is under way on two pilot projects pursuing a common principle – that transportation can be made more efficient or effective if the various networks and modes of travel are managed as a whole system. This is the central tenet of the US Department of Transportation’s (USDOT) Integrated Corridor Management (ICM)
  • 'Talking cars' could save lives, study says
    November 26, 2020
    ITS Australia-led research suggests curve warnings on roads would help drivers
  • When speed compliance becomes a safety issue
    March 29, 2017
    David Crawford finds that softly, softly can be safely, safely when it comes to speed enforcement. Comedians and controversial TV presenters have long made jokes about having to watch the speedometer so closely as they pass speed camera after speed camera that they mow down bus queues. But the joke may have some factual basis according to a study by researchers from the University of Western Australia.