Skip to main content

Predictive analytics aid Cologne’s congestion management

The City of Cologne, Germany, and IBM have completed a smarter traffic pilot to predict and manage traffic flow and road congestion in the city. The pilot demonstrates how the city of Cologne can anticipate, better manage, and in many cases, avoid traffic jams and trouble spots across the city using analytics technology. Germany’s fourth largest city, Cologne has a population of just over one million, is a retail centre, hub for trade shows and a cultural center with many museums and galleries. The increas
January 17, 2013 Read time: 3 mins
The City of Cologne, Germany, and 62 IBM have completed a smarter traffic pilot to predict and manage traffic flow and road congestion in the city. The pilot demonstrates how the city of Cologne can anticipate, better manage, and in many cases, avoid traffic jams and trouble spots across the city using analytics technology.

Germany’s fourth largest city, Cologne has a population of just over one million, is a retail centre, hub for trade shows and a cultural center with many museums and galleries. The increase in traffic density and congestion has prompted the city to seek out new ways to better manage and optimise traffic flow and increase the capacity if its transportation networks within the constraints of its infrastructure.

The traffic control centre collects real-time data from more than 150 monitoring stations and twenty traffic cameras on the roads, highways and at intersections that are known as traffic hot spots. However, the control centre currently does not have advanced traffic management tools or a way to forecast what traffic will be like in the near future. The advanced transportation management software could help traffic officials identify imminent road congestion and help them plan and respond ahead of time.

IBM transportation experts and researchers worked with the City of Cologne to analyse data from its traffic monitoring stations along the on the left bank of the Rhine for a period of six weeks with the aid of the IBM traffic prediction tool and IBM, intelligent transportation solutions. The detailed results, which compare the accuracy of the traffic prediction tool to the real-time data, revealed the accuracy of short-term forecasting for thirty minutes ahead to be 94 percent for vehicle speed and 87 percent for the volume of traffic.

The city’s traffic engineers and IBM were able to predict traffic volume and flow with over 90 percent accuracy up to 30 minutes in advance. As a result, travelers would be able to better plan ahead and determine whether they should leave at a different time, plan an alternate route or use a different mode of transportation.

“The traffic prediction pilot results are very encouraging,” said Thomas Weil, director of the Cologne traffic control centre. “Having the ability to create actionable insight from the traffic monitoring data gives us an ability to better manage congestion as well as provide citizens with more precise traffic information. Our traffic control centre would be able to optimise current traffic flow while anticipating and planning for potential traffic incidents.”

“As one of the first congestion-prone large cities to do so, Cologne has taken an important step in the right direction with this project,” said Eric-Mark Huitema, IBM smarter transportation leader, Europe. “Intelligent traffic management based on precise forecasting techniques can help cities anticipate and avoid traffic congestion and possibly reduce the volume of traffic, results in a more sustainable transportation network.”

The traffic prediction tool developed by IBM Research is a component of the IBM's intelligent operation centre software, which draws on experience gained from smarter cities projects with cities around the world.

Related Content

  • Microsoft research aims to predict traffic jams
    April 9, 2015
    Microsoft Research is working with Federal University of Minas Gerais in Brazil to tackle the problem of traffic jams. The immediate objective of this research is to predict traffic conditions over the next 15 minutes to an hour, so that drivers can be forewarned of likely traffic snarls. The Traffic Prediction Project plans to combine all available traffic data, including both historic and current information gleaned from transportation departments, Bing traffic maps, road cameras and sensors and the so
  • Bridging the highway travel information gap
    March 14, 2012
    A new traffic management solution is attempting to bridge the gap in information available on freeways and arterial roadways. Andrew Bardin Williams reports. Agencies responsible for national networks of roads around the world have the ability to measure, analyse and disseminate accurate travel information to drivers. Millions of dollars go into data collection infrastructure to collect traffic congestion and travel time information on major freeways or highways. For example, a driver on the I-210 in the Lo
  • Report identifies Nashville region transportation needs
    January 30, 2013
    The results of an IBM study of transportation in Nashville and the surrounding region to accelerate its move to better, safer and more reliable transportation for the Nashville region’s citizens released by the Transit Alliance of middle Tennessee and IBM pinpoints areas that could benefit from immediate investment and would help relieve current stress. It also identifies long-term initiatives that could help spur future economic growth and livability in the region. The Transit Alliance commissioned IBM to
  • Travel data critical to traffic management, traveller information
    January 31, 2012
    The ability to bundle together travel data from several discrete sources and fuse it to give a more comprehensive overview of events to stakeholders is the key aim of Viajeo, which is conducting trials in several cities around the world. Here, Ertico's Yanying Li writes about the project in more detail