Skip to main content

Predictive analytics aid Cologne’s congestion management

The City of Cologne, Germany, and IBM have completed a smarter traffic pilot to predict and manage traffic flow and road congestion in the city. The pilot demonstrates how the city of Cologne can anticipate, better manage, and in many cases, avoid traffic jams and trouble spots across the city using analytics technology. Germany’s fourth largest city, Cologne has a population of just over one million, is a retail centre, hub for trade shows and a cultural center with many museums and galleries. The increas
January 17, 2013 Read time: 3 mins
The City of Cologne, Germany, and 62 IBM have completed a smarter traffic pilot to predict and manage traffic flow and road congestion in the city. The pilot demonstrates how the city of Cologne can anticipate, better manage, and in many cases, avoid traffic jams and trouble spots across the city using analytics technology.

Germany’s fourth largest city, Cologne has a population of just over one million, is a retail centre, hub for trade shows and a cultural center with many museums and galleries. The increase in traffic density and congestion has prompted the city to seek out new ways to better manage and optimise traffic flow and increase the capacity if its transportation networks within the constraints of its infrastructure.

The traffic control centre collects real-time data from more than 150 monitoring stations and twenty traffic cameras on the roads, highways and at intersections that are known as traffic hot spots. However, the control centre currently does not have advanced traffic management tools or a way to forecast what traffic will be like in the near future. The advanced transportation management software could help traffic officials identify imminent road congestion and help them plan and respond ahead of time.

IBM transportation experts and researchers worked with the City of Cologne to analyse data from its traffic monitoring stations along the on the left bank of the Rhine for a period of six weeks with the aid of the IBM traffic prediction tool and IBM, intelligent transportation solutions. The detailed results, which compare the accuracy of the traffic prediction tool to the real-time data, revealed the accuracy of short-term forecasting for thirty minutes ahead to be 94 percent for vehicle speed and 87 percent for the volume of traffic.

The city’s traffic engineers and IBM were able to predict traffic volume and flow with over 90 percent accuracy up to 30 minutes in advance. As a result, travelers would be able to better plan ahead and determine whether they should leave at a different time, plan an alternate route or use a different mode of transportation.

“The traffic prediction pilot results are very encouraging,” said Thomas Weil, director of the Cologne traffic control centre. “Having the ability to create actionable insight from the traffic monitoring data gives us an ability to better manage congestion as well as provide citizens with more precise traffic information. Our traffic control centre would be able to optimise current traffic flow while anticipating and planning for potential traffic incidents.”

“As one of the first congestion-prone large cities to do so, Cologne has taken an important step in the right direction with this project,” said Eric-Mark Huitema, IBM smarter transportation leader, Europe. “Intelligent traffic management based on precise forecasting techniques can help cities anticipate and avoid traffic congestion and possibly reduce the volume of traffic, results in a more sustainable transportation network.”

The traffic prediction tool developed by IBM Research is a component of the IBM's intelligent operation centre software, which draws on experience gained from smarter cities projects with cities around the world.

For more information on companies in this article

Related Content

  • Qatar invests $70 billion to pave the way to world beating transportation
    July 26, 2013
    Eng. Zeina Nazer looks at what Qatar’s recently-announced investment in transport infrastructure will mean on the ground. Qatar is experiencing a rapid economic and industrial growth. This growth is characterised by a rapid population increase and by the urgent need towards the development of both infrastructure projects and major transport projects. In order to handle this rate of development within Qatar, Public Works Authority (Ashghal) is developing a fully-integrated multimodal transportation system in
  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than
  • Simulating the effects of optimal mobility
    May 30, 2024
    Simulation-based optimisation is the foundation for real-time predictive analytics when it comes to optimal traffic signal programming, explain Sunny Chakravarty of Econolite and Lorenzo Meschini of PTV Group
  • Data revolution in real time travel information
    February 3, 2012
    Damian Black, CEO and founder of SQLstream Inc, writes about relational stream processing for real-time intelligent transport systems Almost unnoticed there is a revolution going on in Internet data which is different from anything seen before. It is taking place in sensor data, which research organisation Gartner predicts in 2012 will exceed 20 per cent of all non-video Internet traffic.