Skip to main content

Optis releases new simulator to reproduce performance of advanced lighting systems

Virtual prototyping company Optis has unveiled the latest version of its driving simulator Vrx 2018, which virtually reproduces the performance and behaviour of advanced lighting systems including, adaptive front light system, adaptive driving beam matrix beam and pixel beam. It comes with a new set of features which enables transportation OEMs and their Tier-1 suppliers to test and experience the performance of their headlights with virtual prototypes on virtual test tracks, recreating realistic traffic co
November 13, 2017 Read time: 2 mins
Virtual prototyping company Optis has unveiled the latest version of its driving simulator Vrx 2018, which virtually reproduces the performance and behaviour of advanced lighting systems including, adaptive front light system, adaptive driving beam matrix beam and pixel beam. It comes with a new set of features which enables transportation OEMs and their Tier-1 suppliers to test and experience the performance of their headlights with virtual prototypes on virtual test tracks, recreating realistic traffic conditions, including weather, incoming cars and pedestrians.

New product features allow for the adjustment of the control logic of the headlights to improve both visibility and perceived quality.

Vrx 2018 also introduces the assessment of headlight systems against Insurance Institute for Highway Safety (IIHS) standards. It is designed with the intention of optimizing lighting systems and controlling the settings and programming of the virtual prototype, which aims to increase the future score of the IIHS rating due to an accurate and complete analysis.

Nicolas Orand, product development director at Optis, said: “With Vrx 2018, OEMs can deliver highly qualitative and smart lighting, adapted to all conditions, for their customers and everyone on the road. Testing lighting systems virtually and adding control logic features results in a safer end product, which builds on a brand's reputation for safety and high quality, as well as significantly reducing time to market."
UTC

Related Content

  • May 24, 2022
    AVs need extreme training, says research
    AVs will be safer if they are given 'one-in-a-million' collision risk scenarios to learn from
  • July 31, 2012
    Developing an integrated WIM/ANPR enforcement system
    The weigh in motion market remains especially buoyant and technological development continues to reflect this. Although there are major differences in operating philosophies, particularly between developed and developing countries, both the numbers of countries using Weigh In Motion (WIM) technology and the numbers of systems that they deploy are on the increase.
  • July 9, 2014
    Traffic lights: There’s a better way ..
    .. say researchers at Massachusetts Institute of Technology (MIT) who have developed a means of computing optimal timings for city stoplights that they say can significantly reduce drivers’ average travel times. Existing software for timing traffic signals has several limitations, says Carolina Osorio, an assistant professor of civil and environmental engineering at MIT and lead author of a forthcoming paper in the journal Transportation Science that describes the new system, based on a study of traffic
  • January 27, 2012
    Integrate systems to reduce roadside infrastructure
    David Crawford reviews promising current developments. Instrumentation of the road infrastructure has grown to become one of the most dynamic sectors of the ITS industry. Drivers for its deployment include global concerns over the commercial and environmental pressures of traffic congestion, the importance of keeping drivers informed throughout their journeys, and the need to reduce accident rates and promote the safety of all road users, for example by enforcing traffic safety rules.