Skip to main content

New connected vehicle data sets available in the Research Data Exchange (RDE)

New connected vehicle data environments are now available in the US. Department of Transportation's Research Data Exchange (RDE). This web-based data resource collects, manages, and provides access to archived and real-time multi-source and multi-modal data to support the development and testing of intelligent transportation system applications. The RDE now houses the following three additional data environments:
May 4, 2016 Read time: 3 mins

New connected vehicle data environments are now available in the US. Department of Transportation's Research Data Exchange (RDE). This web-based data resource collects, manages, and provides access to archived and real-time multi-source and multi-modal data to support the development and testing of intelligent transportation system applications. The RDE now houses the following three additional data environments:
 
Multi-modal intelligent traffic signal systems (MMITSS) - a next-generation traffic signal system that seeks to provide a comprehensive traffic information framework to service all modes of transportation. The MMITSS bundle aims to improve mobility through signalised corridors using advanced communications and data to facilitate the efficient travel of passenger vehicles, pedestrians, transit, freight, and emergency vehicles through the system. The prototype features three scenarios: Intelligent Traffic Signal System, Freight Signal Priority, and Transit Signal Priority. The data environment contains the following data sets collected from the MMITSS prototype that was tested in Anthem, Arizona: Basic Safety Message, GPS data, Map data, map information for roadside equipment (RSE), priority request server file for RSE, signal plans for RSE, simulation output, system detector data, and vehicle trajectories for RSE.
 
Basic safety message (BSM) emulator - the trajectory conversion algorithm Version 2.3 (TCA) is designed to test different strategies for producing, transmitting, and storing connected vehicle information. The TCA uses vehicle trajectory data, RSE location information, cellular region information, and strategy information to emulate the messages that connected vehicles would produce. The TCA allows emulated vehicles to generate and transmit Probe Data Messages (PDMs), BSMs, the European Union's Cooperative Awareness Messages, Japan's ITS SPOT messages, and the prototype Basic Mobility Message by either dedicated short range communication (DSRC) or via cellular. This data environment contains data sets generated by the TCA using the BSM and PDM at 100-percent market penetration for two simulated traffic networks: an arterial network (Van Ness Avenue in San Francisco, CA) and a freeway network (the interchange of I-270 and I-44 in St. Louis, MO). The data was transmitted by DSRC over RSEs placed at one-third of intersections along Van Ness Ave and every mile along I-270. BSMs and PDMs were generated and transmitted according to the rules laid out in the SAE J2735 Standard.
 
Leesburg VA vehicle awareness device (VAD) - the files in this data environment were produced using the VAD installed on one test vehicle over a two-month period. The VAD installed in the test car is identical to the VADs installed in over 2,800 vehicles participating in the Safety Pilot Model Deployment conducted from August 2012 through August 2013 by the National Highway Traffic Safety Administration in Ann Arbor, Michigan. The data files come from a VAD installed in one test vehicle driven in the Leesburg, VA, area during the period from October 18 through December 19, 2012. The file names denote the year, date, and start time of the data collection. The data have been converted from pcap (packet capture compressed binary) format to a csv (comma separated value) format.
 
Visit the %$Linker: 2 External <?xml version="1.0" encoding="utf-16"?><dictionary /> 0 0 0 oLinkExternal RDE website RDE Website false http://www.its-rde.net/ false false%> for more information on the data sets.

UTC

Related Content

  • July 3, 2015
    European Transport Conference
    The 43rd European Transport Conference, organised by the Association for European Transport, takes place at Campus Westend, Goethe University, Frankfurt, Germany on 28 - 30 September 2015. The conference brings together people working in research, industry, and public policy to network, exchange knowledge, and inspire new ideas. First-class speakers from across the transport industry will talk on themes including: planning for the future, equity in transport, cycling, climate change, and emissions. Th
  • February 21, 2013
    Compass first newsletter available
    The synergy between two European transportation projects, the optimised CO-Modal PASSenger transport for reducing carbon emissions (Compass) and Optimising Passenger Transport Information to Materialise Insights for Sustainable Mobility (Optimism) has prompted the release of a joint newsletter to report their activities and findings. Both projects share common objectives. Through the scientific analysis of social behaviour, mobility patterns and business models they propose a set of strategies, recommendat
  • March 23, 2018
    Asecap: Road safety is a shared responsibility
    Road safety is a shared responsibility of roads, vehicles and users, according to a key message delivered at Asecap’s Annual Safety Conference, in Brussels. The event provided an opportunity for road stakeholders to discuss the main safety priorities of the new mobility package to be presented by the European Commission (EC) next May. Additionally, the conference found that modern toll roads are the safest roads in Europe. The European Parliament and the EC blessed the memorandum of understanding
  • May 14, 2013
    Bluetooth monitoring to reduce Istanbul’s congestion
    Spanish company Trafficnow and Isbak are working together to help in taming the congestion in Istanbul, one of Europe’s most congested cities. They are to install 250 DeepBlue Bluetrack sensors along all the major corridors and access points of the city, together with the DeepBlue core centralised system. The sensors use the signals emitted by Bluetooth-enabled devices such as GPS navigation systems and mobile phones to track vehicles and calculate travel times. With up to ten lanes of traffic, the city aut