Skip to main content

MIT study combines traffic data for smarter signal timings

Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra
April 1, 2015 Read time: 3 mins
Researchers at 2024 Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions.

The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Transportation Science and Transportation Research: Part B.

Osorio says they have developed algorithms that allow major transportation agencies to use high-resolution models of traffic to solve optimisation problems. Typically, such timing determinations are set to optimise travel times along selected major arteries, but are not sophisticated enough to take into account the complex interactions among all streets in a city. In addition, current models do not assess the mix of vehicles on the road at a given time, so they can’t predict how changes in traffic flow may affect overall fuel use and emissions.

For their test case, Osorio and Nanduri used simulations of traffic in the Swiss city of Lausanne, simulating the behaviour of thousands of vehicles per day, each with specific characteristics and activities. The model even accounts for how driving behaviour may change from day to day: For example, changes in signal patterns that make a given route slower may cause people to choose alternative routes on subsequent days.

While existing programs can simulate both city-scale and driver-scale traffic behaviour, integrating the two has been a problem. The MIT team found ways of reducing the amount of detail sufficiently to make the computations practical, while still retaining enough specifics to make useful predictions and recommendations.

“With such complicated models, we had been lacking algorithms to show how to use the models to decide how to change patterns of traffic lights,” Osorio says. “We came up with a solution that would lead to improved travel times across the entire city.” In the case of Lausanne, this entailed modelling 17 key intersections and 12,000 vehicles.

In addition to optimising travel times, the new model incorporates specific information about fuel consumption and emissions for vehicles from motorcycles to buses, reflecting the actual mix seen in the city’s traffic. “The data needs to be very detailed, not just about the vehicle fleet in general, but the fleet at a given time,” Osorio says. “Based on that detailed information, we can come up with traffic plans that produce greater efficiency at the city scale in a way that’s practical for city agencies to use.”

Related Content

  • Statistical improvement for short-term travel time predictions
    June 2, 2014
    Researchers at Imperial College in London have developed a generic three-stage short-term travel prediction model that promises to give greater accuracy under both normal and abnormal conditions. As travellers do not like the randomness of non-recurrent traffic congestion and delays, it is particularly useful for network managers to know how the ongoing traffic situation will develop when an atypical event occurs.
  • No compromise on workzone safety
    January 14, 2022
    The National Work Zone Memorial is a sobering reminder of the dangers of working on US highways. More accurate and timely information can help reduce risks, explains One.network’s Simon Topp
  • Open data gives new lease of life to public travel information screens
    March 4, 2014
    David Crawford finds resurgent interest in travel information screens for buildings. With city governments worldwide increasingly opening up and sharing their public transport data for general use, attention is focusing on the potential financial benefits – to transit operators and businesses more widely. Professor Stephen Goldsmith, who directs the US’ Harvard University’s Data-Smart City Solutions Project says: “Amid nationwide public-sector budget cuts, open data is providing a road map for improving tra
  • Do we need a new approach to ITS and traffic management?
    January 31, 2012
    In an article which has implications for the European Electronic Toll Service, ASECAP's Kallistratos Dionelis asks whether the approach we currently take to major ITS system implementations is always the best or healthiest. I was asked recently to write a paper on the technology-oriented future of transport. To paraphrase, I started with: "The goal of European policy-makers is to establish a transport system which meets society's economic, social and environmental needs, satisfying in parallel a rising dema