Skip to main content

MIT study combines traffic data for smarter signal timings

Researchers at Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions. The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Tra
April 1, 2015 Read time: 3 mins
Researchers at 2024 Massachusetts Institute of Technology (MIT) have found a method of combining vehicle-level data with less precise, but more comprehensive, city-level data on traffic patterns to produce better information than current systems provide. They claim this reduce delays, improve efficiency, and reduce emissions.

The new findings are reported in a pair of papers by assistant professor of civil and environmental engineering Carolina Osorio and alumna Kanchana Nanduri, published in the journals Transportation Science and Transportation Research: Part B.

Osorio says they have developed algorithms that allow major transportation agencies to use high-resolution models of traffic to solve optimisation problems. Typically, such timing determinations are set to optimise travel times along selected major arteries, but are not sophisticated enough to take into account the complex interactions among all streets in a city. In addition, current models do not assess the mix of vehicles on the road at a given time, so they can’t predict how changes in traffic flow may affect overall fuel use and emissions.

For their test case, Osorio and Nanduri used simulations of traffic in the Swiss city of Lausanne, simulating the behaviour of thousands of vehicles per day, each with specific characteristics and activities. The model even accounts for how driving behaviour may change from day to day: For example, changes in signal patterns that make a given route slower may cause people to choose alternative routes on subsequent days.

While existing programs can simulate both city-scale and driver-scale traffic behaviour, integrating the two has been a problem. The MIT team found ways of reducing the amount of detail sufficiently to make the computations practical, while still retaining enough specifics to make useful predictions and recommendations.

“With such complicated models, we had been lacking algorithms to show how to use the models to decide how to change patterns of traffic lights,” Osorio says. “We came up with a solution that would lead to improved travel times across the entire city.” In the case of Lausanne, this entailed modelling 17 key intersections and 12,000 vehicles.

In addition to optimising travel times, the new model incorporates specific information about fuel consumption and emissions for vehicles from motorcycles to buses, reflecting the actual mix seen in the city’s traffic. “The data needs to be very detailed, not just about the vehicle fleet in general, but the fleet at a given time,” Osorio says. “Based on that detailed information, we can come up with traffic plans that produce greater efficiency at the city scale in a way that’s practical for city agencies to use.”

Related Content

  • August 26, 2016
    Vaisala: Weather data is vital for connected vehicles
    Vaisala’s Dr Kevin Petty explains why the weather will continue to play a big part in road safety and traffic management in the smart cities of the future. The world is becoming increasingly connected. Thanks to advances in information and communications technology, the cities we live in are becoming ‘smart’, with everything from education to law enforcement managed by integrated tech solutions in a bid to improve quality of life.
  • November 9, 2016
    Driverless-vehicle options now include scooters
    Researchers have developed an autonomous mobility scooter which could, in principle, use a scooter to get down the hall and through the lobby of an apartment building, take a golf cart across the building’s parking lot, and pick up an autonomous car on the public roads.
  • August 22, 2014
    MIT researchers hack into traffic lights
    With permission from a local road agency, researchers in from the University of Michigan hacked into nearly 100 wirelessly networked traffic lights, highlighting security issues that they say are likely to pervade networked traffic infrastructure around the country. More than 40 states currently use such systems to keep traffic flowing as efficiently as possible, helping to reduce emissions and delays. The team, led by University of Michigan computer scientist J. Alex Halderman, found three major weaknes
  • May 31, 2013
    Data goldmines offer rich pickings
    Astronomical is not too grand a term to describe the current rate of growth in transportation-related data. Massive amounts of traffic related information, such as speed, volume, incidents and weather are being generated every second by road operators and users alike. Big data’ derives its name from the sheer amount and complexity of available raw data. Its potential value is starting to emerge among the intelligent transportation systems community. A gold rush is taking place to capture this value, with da