Skip to main content

Making SMART Signal even smarter

According to researchers at the University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals. The system, developed with funding from the Minnesota Department of Transportation (MnDOT), not only collects traffic and si
April 20, 2015 Read time: 2 mins
According to researchers at the 584 University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals.

The system, developed with funding from the 2103 Minnesota Department of Transportation (MnDOT), not only collects traffic and signal-phase data automatically, but it also identifies under-performing traffic signals and generates optimal signal timing plans with minimal human intervention.

MnDOT, along with many US cities and counties embeds loop detectors in roads that notify a traffic signal when a vehicle is present. Staff normally must manually track wait times to determine how signal timing is affecting traffic.

The researchers claim SMART Signal automates much of this process by recording how long a vehicle waits at an intersection and automatically reporting the data, along with signal timing, to a central server. The data, viewable in real-time on a website, —can then be analysed to determine traffic patterns and optimal signal timing. By reducing the cost of data collection and performance measurement, SMART Signal allows MnDOT to base signal retiming decisions on performance rather than a fixed schedule.

The latest research optimises the system’s ability to reduce traffic delays by developing a framework to diagnose problems that cause delays at traffic signals and an algorithm that automatically optimises the signal plan to address these problems.

The enhancements were successfully tested on Highway 13, reducing vehicle delay there by five per cent. Researchers say the benefit could be in the double digits for corridors with worse traffic delays.

The soft ware upgrade has since been integrated into the more than 100 intersections in Minnesota equipped with the SMART Signal system.

For more information on companies in this article

Related Content

  • Atlanta launches Smart Corridor demonstration project
    September 15, 2017
    The City of Atlanta, Georgia, in partnership with the Georgia Department of Transportation (GDOT) and Georgia Tech, has launched a smart city project on a major east-west artery in the city. The North Avenue Smart Corridor demonstration project, funded by the Renew Atlanta Infrastructure Bond, will deploy the latest technology in adaptive signal systems for a safer, more efficient flow of transit, personal vehicles, cyclists and pedestrians
  • ‘What’s the optimum number of cooks?’ asks Valerann
    October 23, 2023
    ITS Software as a Service specialist explains in detail how cross-source, cross-type, deep data fusion is solving global traffic accident conundrums
  • Integrating traffic systems improves management and control
    April 25, 2012
    Following a successful trial in 2007, VicRoads has adopted Streams Motorway Management from Transmax as its primary traffic management and control system Throughout the world, the avoidable social cost of traffic congestion continues to rise each year with increased motorisation, urbanisation and population growth. Traffic congestion is responsible for an increase in travel times, vehicle operating costs and carbon emissions. In 2007, VicRoads commissioned Streams Motorway Management for the M1 Monash Freew
  • TransCore to upgrade over 300 toll lanes in central Florida
    October 14, 2015
    The Central Florida Expressway Authority (CFX) has awarded TransCore a US$85 million project to design, install and maintain a new, innovative electronic toll collection system for over 300 toll lanes, as part of an ongoing initiative to improve its transportation management system. TransCore will upgrade the system with its Infinity Digital Lane System, which consists of independent modules that can be easily replaced, upgraded or removed in the field without affecting lane operations, reducing long-ter