Skip to main content

Making SMART Signal even smarter

According to researchers at the University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals. The system, developed with funding from the Minnesota Department of Transportation (MnDOT), not only collects traffic and si
April 20, 2015 Read time: 2 mins
According to researchers at the 584 University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals.

The system, developed with funding from the 2103 Minnesota Department of Transportation (MnDOT), not only collects traffic and signal-phase data automatically, but it also identifies under-performing traffic signals and generates optimal signal timing plans with minimal human intervention.

MnDOT, along with many US cities and counties embeds loop detectors in roads that notify a traffic signal when a vehicle is present. Staff normally must manually track wait times to determine how signal timing is affecting traffic.

The researchers claim SMART Signal automates much of this process by recording how long a vehicle waits at an intersection and automatically reporting the data, along with signal timing, to a central server. The data, viewable in real-time on a website, —can then be analysed to determine traffic patterns and optimal signal timing. By reducing the cost of data collection and performance measurement, SMART Signal allows MnDOT to base signal retiming decisions on performance rather than a fixed schedule.

The latest research optimises the system’s ability to reduce traffic delays by developing a framework to diagnose problems that cause delays at traffic signals and an algorithm that automatically optimises the signal plan to address these problems.

The enhancements were successfully tested on Highway 13, reducing vehicle delay there by five per cent. Researchers say the benefit could be in the double digits for corridors with worse traffic delays.

The soft ware upgrade has since been integrated into the more than 100 intersections in Minnesota equipped with the SMART Signal system.

Related Content

  • SensTraffic stars for Sensys in San Jose
    June 13, 2016
    Today at ITS America 2016 San Jose is highlighting Sensys Networks announces SensTraffic, a traffic data and analytical Smart City software platform for managing corridors and intersections. According to the company, this new service improves upon the highly manual and inefficient methods to collect traffic data and incorporate it into actionable insights. Traffic engineers can generate a wide variety of detailed reports including congestion mapping, travel times, origin/destination, high-resolution perform
  • Iteris wins traffic management deals in Illinois
    January 30, 2024
    Contracts are with Illinois DoT & the Lake County Division of Transportation
  • Data goldmines offer rich pickings
    May 31, 2013
    Astronomical is not too grand a term to describe the current rate of growth in transportation-related data. Massive amounts of traffic related information, such as speed, volume, incidents and weather are being generated every second by road operators and users alike. Big data’ derives its name from the sheer amount and complexity of available raw data. Its potential value is starting to emerge among the intelligent transportation systems community. A gold rush is taking place to capture this value, with da
  • Minnesota DOT deploys GTT’s Canoga to curb intersection vehicle crashes
    September 3, 2014
    Minnesota Department of Transportation (MnDOT) is working toward making the state’s roads safer, using the Canoga traffic sensing solution from Global Traffic Technologies (GTT) to warn at-risk drivers when cross-traffic is approaching. Nearly 70 per cent of fatal vehicle collisions in Minnesota, as well as other states, occur on roads in rural communities, where higher speeds, varying terrain and inconsistent sightlines can put many drivers in danger. The MnDOT initiative is part of the nationwide Towards