Skip to main content

Making SMART Signal even smarter

According to researchers at the University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals. The system, developed with funding from the Minnesota Department of Transportation (MnDOT), not only collects traffic and si
April 20, 2015 Read time: 2 mins
According to researchers at the 584 University of Minnesota, most traffic signals in the US are only retimed every two to five years (or longer), largely due to the expense associated with retiming efforts. However, over the past several years, University of Minnesota researchers have developed and refined its SMART Signal system to make it easier and less expensive to retime signals.

The system, developed with funding from the 2103 Minnesota Department of Transportation (MnDOT), not only collects traffic and signal-phase data automatically, but it also identifies under-performing traffic signals and generates optimal signal timing plans with minimal human intervention.

MnDOT, along with many US cities and counties embeds loop detectors in roads that notify a traffic signal when a vehicle is present. Staff normally must manually track wait times to determine how signal timing is affecting traffic.

The researchers claim SMART Signal automates much of this process by recording how long a vehicle waits at an intersection and automatically reporting the data, along with signal timing, to a central server. The data, viewable in real-time on a website, —can then be analysed to determine traffic patterns and optimal signal timing. By reducing the cost of data collection and performance measurement, SMART Signal allows MnDOT to base signal retiming decisions on performance rather than a fixed schedule.

The latest research optimises the system’s ability to reduce traffic delays by developing a framework to diagnose problems that cause delays at traffic signals and an algorithm that automatically optimises the signal plan to address these problems.

The enhancements were successfully tested on Highway 13, reducing vehicle delay there by five per cent. Researchers say the benefit could be in the double digits for corridors with worse traffic delays.

The soft ware upgrade has since been integrated into the more than 100 intersections in Minnesota equipped with the SMART Signal system.

Related Content

  • September 11, 2023
    Reducing climate impacts starts at the intersection, says Inrix
    The tools to identify and reduce unnecessary delays at intersections are here – and traffic signal performance improvement is also eligible for US government funding, points out Rick Schuman of Inrix
  • June 17, 2016
    Less travel aggravation to blunt Aggieland fans’ motivation
    Returning travel times to normal within two hours of the end of a major football game was the challenge facing College Station, Adam Lyons explains how this was achieved. College Station, TX, also known as ‘Aggieland’, is located right in the middle of the Dallas/Fort Worth, San Antonio and Houston triangle making the city accessible to over 14 million Texans within less than a four-hour drive. One of the biggest draws to this area is Texas A&M University (TAMU) and the Aggie football games in the fall, mea
  • February 9, 2017
    PTV sets its sights on Smart City solutions
    Making a city smarter not only relies on understand technological opportunities but also human decision-making, as Miller Crockart explains. Cities are about people – a fact that can easily be forgotten when experts talk about roads, healthcare and education as though they are abstract and unconnected monoliths rather than things people use. Understanding how and why people use services is vital for making decisions on how they can be optimised for maximum efficiency across inter-connected networks that for
  • August 13, 2015
    Syracuse models post-industrial revival for US cities
    A connective corridor in Syracuse, New York State, could be a model for other post-industrial cities, as David Crawford discovers. The aim of the city of Syracuse’ 5.6km-long Connective Corridor in Onandaga County in upstate New York is to create a model ‘complete street’ for use in wider regeneration schemes. Key transport-sector components are traffic calming, high-quality transit with accessible passenger information, plus walkability and bike-friendliness.